Bài 76 trang 114 SBT toán 9 tập 2

Giải bài 76 trang 114 sách bài tập toán 9. Hai ròng rọc có tâm O, O’ và bán kính R = 4a, R’ = a. Hai tiếp tuyến chung MN và PQ cắt nhau tại A...

    Đề bài

    Hai ròng rọc có tâm \(O, O’\) và bán kính \(R = 4a,\) \(R’ = a.\) Hai tiếp tuyến chung \(MN\) và \(PQ\) cắt nhau tại \(A\) theo góc \(60^\circ.\) Tìm độ dài của dây cua- roa mắc qua hai ròng rọc.

    Phương pháp giải - Xem chi tiết

    Ta sử dụng kiến thức:

    +) Nếu hai tiếp tuyến của một đường tròn cắt nhau tại một điểm thì tia kẻ từ điểm đó đi qua tâm là tia phân giác của góc tạo bởi hai tiếp tuyến.

    +) Trong tam giác vuông, bình phương mỗi cạnh góc vuông bằng cạnh góc vuông kia nhân với cotang góc kề.

    +) Trong đường tròn \(R,\) độ dài \(l\) của một cung \(n^\circ\) được tính theo công thức: \(l=\dfrac{\pi Rn}{180}.\)

    Lời giải chi tiết

    +) Vì hai tiếp tuyến chung của đường tròn \((O)\) và \((O’)\) cắt nhau tại \(A\) nên \(O, O’, A\) thẳng hàng.

    \(\widehat {OAM} = \widehat {OAP} = \displaystyle{1 \over 2}\widehat {MAP}\) (tính chất hai tiếp tuyến cắt nhau)

    \( \Rightarrow \widehat {OAM} = {30^0}\)  

    +) Trong tam giác vuông \(OMA\) có \(\widehat {OMA} = {90^0}\)

    \( \Rightarrow MA = OM.\cot \widehat {OAM}\)

    \( = 4a\cot {30^0} = 4a\sqrt 3 \)

    +) Trong tam giác vuông \(O’NA\) có \(\widehat {O'NA} = {90^0}\)

    \( \Rightarrow NA = O'N\cot \widehat {O'AN} \)\(= a\cot {30^0} = a\sqrt 3 \)

    Từ đó: \(MN = MA - NA \)\(= 4a\sqrt 3  - a\sqrt 3  = 3a\sqrt 3 \)

    +) Trong tứ giác \(O’NAQ\) có \(\widehat N = \widehat Q = {90^0}\); \(\widehat A = {60^0}\)

    Suy ra: \(\widehat {NO'Q} = 360^0-(90^0+90^0+60^0)\)\(={120^0}\) (tổng bốn góc trong tứ giác bằng \(360^0)\)

    Độ dài cung nhỏ \(\overparen{NQ}\) là: \({l_1} =\displaystyle {{\pi .a.120} \over {180}} = {{2\pi a} \over 3}\)

    +) Trong tứ giác \(OMAP\) có \(\widehat M = \widehat P = {90^0}\); \(\widehat A = {60^0}\)

    Suy ra: \(\widehat {MOP} = 360^0-(90^0+90^0+60^0)\)\(={120^0}\) (tổng bốn góc trong tứ giác bằng \(360^0)\) nên số đo cung nhỏ \(\overparen{MP}\) bằng \({120^0}\)

      \(sđ \overparen{MnP}\) \( = {360^0} - {120^0} = {240^0}\)

    Độ dài cung lớn \(\overparen{MnP}\) là \({l_2} = \displaystyle{{\pi .4a.240} \over {180}} = {{16\pi a} \over 3}\)

    Chiều dài của dây cua – roa mắc qua hai ròng rọc là:

    \(2MN + {l_1} + {l_2}\)\( = \displaystyle2.3a\sqrt 3  + {{2\pi a} \over 3} + {{16\pi a} \over 3}\)

    \(=6a\sqrt 3  + 6\pi a = 6a\left( {\sqrt 3  + \pi } \right)\)

    Xemloigiai.com

    SBT Toán lớp 9

    Giải sách bài tập đại số, hình học lớp 9 tập 1, tập 2. Giải tất cả các chương và các trang trong sách bài tập đại số và hình học với lời giải chi tiết, phương pháp giải ngắn nhất

    PHẦN ĐẠI SỐ - SBT TOÁN 9 TẬP 1

    PHẦN HÌNH HỌC - SBT TOÁN 9 TẬP 1

    PHẦN ĐẠI SỐ - SBT TOÁN 9 TẬP 2

    PHẦN HÌNH HỌC - SBT TOÁN 9 TẬP 2

    CHƯƠNG 1: CĂN BẬC HAI. CĂN BẬC BA

    CHƯƠNG 2: HÀM SỐ BẬC NHẤT

    CHƯƠNG 1: HỆ THỨC LƯỢNG TRONG TAM GIÁC VUÔNG

    CHƯƠNG 2: ĐƯỜNG TRÒN

    CHƯƠNG 3: HỆ HAI PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN

    CHƯƠNG 4: HÀM SỐ y=ax^2 (a ≠ 0) . PHƯƠNG TRÌNH BẬC HAI MỘT ẨN

    CHƯƠNG 3: GÓC VỚI ĐƯỜNG TRÒN

    CHƯƠNG 4: HÌNH TRỤ - HÌNH NÓN – HÌNH CẦU

    BÀI TẬP ÔN TẬP CUỐI NĂM

    Lớp 9 | Các môn học Lớp 9 | Giải bài tập, đề kiểm tra, đề thi Lớp 9 chọn lọc

    Danh sách các môn học Lớp 9 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2025 ngắn gọn, chi tiết dễ hiểu.

    Toán Học

    Vật Lý

    Hóa Học

    Ngữ Văn

    Sinh Học

    GDCD

    Tin Học

    Tiếng Anh

    Công Nghệ

    Lịch Sử & Địa Lý

    Âm Nhạc & Mỹ Thuật