Bài 78 trang 114 SBT toán 9 tập 2

Giải bài 78 trang 114 sách bài tập toán 9. Cho tam giác AHB có ...

    Đề bài

    Cho tam giác \(AHB\) có \(\widehat H = 90^\circ ,\widehat A = 30^\circ \) và \(BH = 4cm.\) Tia phân giác của góc \(B\) cắt \(AH\) tại \(O.\) Vẽ đường tròn \((O; OH)\) và đường tròn \((O; OA).\)

    \(a)\) Chứng minh đường tròn \((O; OH)\) tiếp xúc với cạnh \(AB.\)

    \(b)\) Tính diện tích hình vành khăn nằm giữa hai đường tròn trên.

    Phương pháp giải - Xem chi tiết

    Ta sử dụng kiến thức:

    +) Tính chất tia phân giác của một góc: Điểm nằm trên tia phân giác của một góc thì cách đều hai cạnh của góc đó.

    +) Trong tam giác vuông, bình phương mỗi cạnh góc vuông bằng cạnh góc vuông kia nhân với \(\tan\) góc đối.

    +) Trong tam giác vuông, bình phương mỗi cạnh góc vuông bằng cạnh huyền nhân với \(\cos\) góc kề.

    +) Diện tích \(S\) của một hình tròn bán kính \(R\) được tính theo công thức: \(S=\pi.R^2\).

    Lời giải chi tiết

    \(a)\) Kẻ \(OK \bot AB\) tại \(K\) 

    Vì \(BO\) là đường phân giác của \(\widehat B\) (gt)

    \( \Rightarrow OK = OH\) (tính chất đường phân giác)

    Suy ra: \(OK\) cũng là bán kính của đường tròn \((O;OH)\)

    Vậy đường tròn \((O; OH)\) tiếp xúc với \(AB\) tại \(K.\) 

    \(b)\) \(\Delta AHB\) có \(\widehat H = {90^0}\); \(\widehat A = {30^0}\)

    Suy ra: \(\widehat B = {60^0} \Rightarrow \widehat {ABO} =\displaystyle {1 \over 2}\widehat B = {30^0}\)

    Suy ra: \(∆OAB\) cân tại \(O\) nên \(OB = OA\)

    Vậy \(B \in (O; OA)\)

    \(∆BHO\) có \(\widehat H = {90^0}\); \(\widehat {OBH} = {30^0}\)

    \(OH = BH.\tan {30^0} \)\(=\displaystyle  4.{{\sqrt 3 } \over 3} = {{4\sqrt 3 } \over 3}\;\;(cm)\)

    \(OB = \displaystyle {{BH} \over {\cos \widehat {OBH}}} \)\(= \displaystyle {4 \over {\cos {{30}^0}}} = {4 \over \displaystyle {{{\sqrt 3 } \over 2}}} = {{8\sqrt 3 } \over 3}\) \((cm)\)

    Diện tích đường tròn nhỏ: \(S_1=\displaystyle \pi {\left( {{{4\sqrt 3 } \over 3}} \right)^2} = {{16\pi } \over 3}\)  \((cm^2)\)

    Diện tích đường tròn lớn: \({S_2} = \displaystyle \pi {\left( {{{8\sqrt 3 } \over 3}} \right)^2} = {{64\pi } \over 3}\) \((cm^2)\)

    Diện tích hình vành khăn:

    \(S={S_2} - {S_1} = \displaystyle {{64\pi } \over 3} - {{16\pi } \over 3} \)\(=\displaystyle  {{48\pi } \over 3} = 16\pi \) \((cm^2)\)

    Xemloigiai.com

    SBT Toán lớp 9

    Giải sách bài tập đại số, hình học lớp 9 tập 1, tập 2. Giải tất cả các chương và các trang trong sách bài tập đại số và hình học với lời giải chi tiết, phương pháp giải ngắn nhất

    PHẦN ĐẠI SỐ - SBT TOÁN 9 TẬP 1

    PHẦN HÌNH HỌC - SBT TOÁN 9 TẬP 1

    PHẦN ĐẠI SỐ - SBT TOÁN 9 TẬP 2

    PHẦN HÌNH HỌC - SBT TOÁN 9 TẬP 2

    CHƯƠNG 1: CĂN BẬC HAI. CĂN BẬC BA

    CHƯƠNG 2: HÀM SỐ BẬC NHẤT

    CHƯƠNG 1: HỆ THỨC LƯỢNG TRONG TAM GIÁC VUÔNG

    CHƯƠNG 2: ĐƯỜNG TRÒN

    CHƯƠNG 3: HỆ HAI PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN

    CHƯƠNG 4: HÀM SỐ y=ax^2 (a ≠ 0) . PHƯƠNG TRÌNH BẬC HAI MỘT ẨN

    CHƯƠNG 3: GÓC VỚI ĐƯỜNG TRÒN

    CHƯƠNG 4: HÌNH TRỤ - HÌNH NÓN – HÌNH CẦU

    BÀI TẬP ÔN TẬP CUỐI NĂM

    Lớp 9 | Các môn học Lớp 9 | Giải bài tập, đề kiểm tra, đề thi Lớp 9 chọn lọc

    Danh sách các môn học Lớp 9 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2025 ngắn gọn, chi tiết dễ hiểu.

    Toán Học

    Vật Lý

    Hóa Học

    Ngữ Văn

    Sinh Học

    GDCD

    Tin Học

    Tiếng Anh

    Công Nghệ

    Lịch Sử & Địa Lý

    Âm Nhạc & Mỹ Thuật