Bài 15 trang 101 SGK Hình học 12

Giải bài 15 trang 101 SGK Hình học 12. Cho hai đường thẳng chéo nhau.a) Viết phương trình các mặt phẳng (α) và (β) song song với nhau và lần lượt chứa d và d'.

    Cho hai đường thẳng chéo nhau

    \(d:\,\,\left\{ \begin{array}{l}x = 2 - t\\y = - 1 + t\\z = 1 - t\end{array} \right.\,\,\,\,\,\,\,\,\,d':\,\,\left\{ \begin{array}{l}x = 2 + 2t'\\y = t'\\z = 1 + t'\end{array} \right.\)

    LG a

    Viết phương trình các mặt phẳng \((α)\) và \((β)\) song song với nhau và lần lượt chứa \(d\) và \(d'\).

    Phương pháp giải:

    + Mặt phẳng \((α)\) chính là mặt phẳng chứa \(d\) và song song với \(d'\)

    + Mặt phẳng \(\beta\) chính là mặt phẳng chứa \(d'\) và song song với \(d\)

    Lời giải chi tiết:

    Mặt phẳng \((α)\) chính là mặt phẳng chứa \(d\) và song song với \(d'\)

    \(d\) có vectơ chỉ phương \(\overrightarrow a  = (-1; 1; -1)\).

    \(d'\) có vectơ chỉ phương \(\overrightarrow {a'}  = (2; 1; 1)\)

    Vectơ pháp tuyến \(\overrightarrow n \) của \((α)\) vuông góc với \(\overrightarrow a \) và \(\overrightarrow {a'} \) nên: \(\overrightarrow n  = \left[ {\overrightarrow a ;\overrightarrow {a'} } \right] = \left( {2; - 1;3} \right)\)

    Đường thẳng \(d\) chứa điểm \(A(2; -1; 1)\). Mặt phẳng \((α)\) chứa \(d\) nên chứa điểm \(A\). Phương trình của \((α)\):

    \(2(x - 2) - 1(y + 1) - 3(z - 1) = 0\)

    \(\Leftrightarrow  2x - y - 3z - 2 = 0\)

    Mặt phẳng \((\beta)\) chính là mặt phẳng chứa \(d'\) và song song với \(d\) nên cũng nhận \(\overrightarrow n  = \left( {2; - 1;3} \right)\) là VTPT và đi qua điểm \(B\left( {2;0;1} \right)\)

    Suy ra phương trình mặt phẳng \((β)\): \(2(x-2)-y-3(z-1)=0 \Leftrightarrow  2x - y - 3z - 1 = 0\)


    LG b

    Lấy hai điểm \(M(2 ; -1 ; 1)\) và \(M'(2 ; 0 ; 1)\) lần lượt trên \(d\) và \(d'\). Tính khoảng cách từ \(M\) đến mặt phẳng \((β)\) và khoảng cách từ \(M'\) đến mặt phẳng \((α)\). So sánh hai khoảng cách đó.

    Phương pháp giải:

    Sử dụng công thức tính khoảng cách từ 1 điểm đến một mặt phẳng.

    Lời giải chi tiết:

    Ta có: \(d (M,(β))\) =\({{\left| {2.2 - 1.( - 1) - 3.1 - 1} \right|} \over {\sqrt {{2^2} + {{( - 1)}^2} + {{( - 3)}^2}} }} = {1 \over {\sqrt {14} }}\)

    \(d\left( {M';\left( \alpha  \right)} \right) = \frac{{\left| {2.2 - 1.0 - 3.1 - 2} \right|}}{{\sqrt {{2^2} + {{\left( { - 1} \right)}^2} + {{\left( { - 3} \right)}^2}} }} = \frac{1}{{\sqrt {14} }}\)

    \(\Rightarrow d(M,(β)) = d(M', (α))\)

    Xemloigiai.com

    SGK Toán lớp 12

    Giải bài tập toán lớp 12 như là cuốn để học tốt Toán lớp 12. Tổng hợp công thức, lý thuyết, phương pháp giải bài tập giải tích và hình học SGK Toán lớp 12, giúp ôn luyện thi THPT Quốc gia. Giai toan 12 xem mục lục giai toan lop 12 sach giao khoa duoi day

    GIẢI TÍCH 12

    HÌNH HỌC 12

    CHƯƠNG I. ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ

    CHƯƠNG II. HÀM SỐ LŨY THỪA HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT

    CHƯƠNG III. NGUYÊN HÀM - TÍCH PHÂN VÀ ỨNG DỤNG

    CHƯƠNG IV. SỐ PHỨC

    CHƯƠNG I. KHỐI ĐA DIỆN

    CHƯƠNG II. MẶT NÓN, MẶT TRỤ, MẶT CẦU

    CHƯƠNG III. PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN

    Xem Thêm