Bài 51 trang 87 SGK Toán 9 tập 2

Cho I, O lần lượt là tâm đường tròn

    Đề bài

    Cho \(I, \, O\) lần lượt là tâm đường tròn nội tiếp, tâm đường tròn ngoại tiếp tam giác \(ABC\) với \(\widehat{A} = 60^0.\) Gọi \(H\) là giao điểm của các đường cao \(BB'\) và \(CC'.\)

    Chứng minh các điểm \(B,\, C,\, O,\, H,\, I\) cùng thuộc một đường tròn.

    Phương pháp giải - Xem chi tiết

    Với đoạn thẳng \(AB\) và góc \(\alpha\, \, (0^0 < \alpha < 180^0)\) cho trước thì quỹ tích các điểm \(M\) thỏa mãn \(\widehat{AMB}=\alpha\) là hai cung chứa góc \(\alpha\) dựng trên đoạn \(AB.\)

    Nên ta chỉ ra \(\widehat{BOC}=\widehat{BHC}=\widehat{BIC}\). 

    Lời giải chi tiết

                                    

    +) Ta có: \(\widehat{BOC} = 2\widehat{BAC} =  2.60^0= 120^0\)  (góc nội tiếp và góc ở tâm cùng chắn một cung \(BC\)).                (1)

    +) Lại có  \(\widehat{BHC} = \widehat{B'HC'}\) (hai góc đối đỉnh)

    Xét tứ giác AB'HC' có: \(\widehat{B'HC'} + \widehat {HC'A} + \widehat {HB'A} + \widehat A = 360^0\) (tổng các góc của tứ giác bằng \(360^0\)) nên \(\widehat{B'HC'} = 360^\circ  - \widehat {HC'A} - \widehat {HB'A} - \widehat A\) \( = 360^\circ  - 90^\circ  - 90^\circ  - 60^\circ  = 120^\circ\)

    \(\Rightarrow \widehat{BHC} = 120^0.\)           (2)  

    +) Vì I là tâm đường tròn nội tiếp tam giác ABC nên BI; CI lần lượt là tia phân giác góc B, góc C.

    Xét tam giác \(ABC\) có \(\widehat B + \widehat C + \widehat A = 180^\circ \) (Định lí tổng 3 góc trong một tam giác) \( \Leftrightarrow \widehat B + \widehat C = 180^\circ  - 60^\circ  = 120^\circ \)

    Xét tam giác BIC có \(\widehat {BIC}+ \widehat {IBC}+ \widehat {ICB}=180^0\) (Định lí tổng 3 góc trong một tam giác) 

    \(\Rightarrow \)\(\begin{array}{l}\widehat {BIC} = 180^\circ  - \widehat {IBC} - \widehat {ICB} = 180^\circ  - \dfrac{{\widehat B}}{2} - \dfrac{{\widehat C}}{2}\\ = 180^\circ  - \dfrac{{\widehat B + \widehat C}}{2} = 180^\circ  - 60^\circ  = 120^\circ \end{array}\)

    Do đó \(\widehat{BIC} = 120^0.\)  (3)

    Từ (1), (2), (3) ta thấy các điểm \(O, \, H, \, I\) cùng nằm trên các cung chứa góc \(120^0\) dựng trên đoạn thẳng \(BC.\) hay 5 điểm \(B,\, C,\, O,\, H,\, I\) cùng thuộc một đường tròn. 

    SGK Toán lớp 9

    Giải bài tập toán lớp 9 như là cuốn để học tốt Toán lớp 9. Tổng hợp công thức, lý thuyết, phương pháp giải bài tập đại số và hình học SGK Toán lớp 9 giúp luyện thi vào 10 hiệu quả. Giai toan 9 xem mục lục giai toan lop 9 sach giao khoa duoi day

    PHẦN ĐẠI SỐ - TOÁN 9 TẬP 1

    PHẦN HÌNH HỌC - TOÁN 9 TẬP 1

    PHẦN ĐẠI SỐ - TOÁN 9 TẬP 2

    PHẦN HÌNH HỌC - TOÁN 9 TẬP 2

    CHƯƠNG I. CĂN BẬC HAI. CĂN BẬC BA

    CHƯƠNG II. HÀM SỐ BẬC NHẤT

    CHƯƠNG I. HỆ THỨC LƯỢNG TRONG TAM GIÁC VUÔNG

    CHƯƠNG II. ĐƯỜNG TRÒN

    CHƯƠNG III. HỆ HAI PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN

    CHƯƠNG IV. HÀM SỐ y = ax^2 (a ≠ 0). PHƯƠNG TRÌNH BẬC HAI MỘT ẨN

    CHƯƠNG III. GÓC VỚI ĐƯỜNG TRÒN

    CHƯƠNG IV. HÌNH TRỤ - HÌNH NÓN - HÌNH CẦU

    BÀI TẬP ÔN CUỐI NĂM - TOÁN 9

    Xem Thêm

    Lớp 9 | Các môn học Lớp 9 | Giải bài tập, đề kiểm tra, đề thi Lớp 9 chọn lọc

    Danh sách các môn học Lớp 9 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2025 ngắn gọn, chi tiết dễ hiểu.

    Toán Học

    Vật Lý

    Hóa Học

    Ngữ Văn

    Sinh Học

    GDCD

    Tin Học

    Tiếng Anh

    Công Nghệ

    Lịch Sử & Địa Lý

    Âm Nhạc & Mỹ Thuật