Bài 1.51 trang 23 SBT hình học 12

Giải bài 1.51 trang 23 sách bài tập hình học 12. Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng a...

    Đề bài

    Cho hình chóp tam giác đều \(S.ABC\) có cạnh đáy bằng \(a\), diện tích một mặt bên bằng \(\dfrac{{5\sqrt 3 {a^2}}}{{12}}\). Thể tích của hình chóp bằng:

    A. \(\dfrac{{\sqrt 6 }}{{24}}{a^3}\)                  B. \(\dfrac{{\sqrt 6 }}{{12}}{a^3}\)

    C. \(\dfrac{{\sqrt 6 }}{4}{a^3}\)                  D. \(\dfrac{{\sqrt 2 }}{{12}}{a^3}\)

    Phương pháp giải - Xem chi tiết

    - Gọi \(O\) là tâm tam giác đáy, \(N\) là trung điểm \(AB\).

    - Tính độ dài chiều cao và diện tích đáy.

    - Tính thể tích theo công thức \(V = \dfrac{1}{3}Sh\).

    Lời giải chi tiết

    Tam giác \(ABC\) đều có \({S_{ABC}} = \dfrac{{{a^2}\sqrt 3 }}{4}\) và \(CN = \dfrac{{a\sqrt 3 }}{2}\) \( \Rightarrow ON = \dfrac{1}{3}CN = \dfrac{{a\sqrt 3 }}{6}\).

    Tam giác \(SAB\) có \({S_{SAB}} = \dfrac{1}{2}AB.SN\) \( \Rightarrow SN = \dfrac{{2{S_{SAB}}}}{{AB}} = \dfrac{{2.\dfrac{{5\sqrt 3 {a^2}}}{{12}}}}{a} = \dfrac{{5\sqrt 3 a}}{6}\).

    Tam giác \(SON\) vuông tại \(O\) có \(SO = \sqrt {S{N^2} - O{N^2}} \) \( = \sqrt {\dfrac{{75{a^2}}}{{36}} - \dfrac{{3{a^2}}}{{36}}}  = a\sqrt 2 \)

    Vậy thể tích khối chóp \({V_{S.ABC}} = \dfrac{1}{3}SO.{S_{ABC}}\) \( = \dfrac{1}{3}.a\sqrt 2 .\dfrac{{{a^2}\sqrt 3 }}{4} = \dfrac{{{a^3}\sqrt 6 }}{{12}}\).

    Chọn B.

    Xemloigiai.com

    SBT Toán lớp 12

    Giải sách bài tập toán hình học và giải tích lớp 12. Giải chi tiết tất cả câu hỏi trong các chương và bài chi tiết trong SBT hình học và giải tích toán 12 cơ bản với cách giải nhanh và ngắn gọn nhất

    GIẢI TÍCH SBT 12

    HÌNH HỌC SBT 12

    Chương 1: Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số

    Chương 2: Hàm số lũy thừa. Hàm số mũ và hàm số Logarit

    Chương 3: Nguyên hàm, tích phân và ứng dụng

    Chương 4: Số phức

    Chương 1: Khối đa diện

    Chương 2: Mặt nón, mặt trụ, mặt cầu

    Chương 3: Phương pháp tọa độ trong không gian

    Ôn tập cuối năm Hình học 12