Bài 1.53 trang 23 SBT hình học 12

Giải bài 1.53 trang 23 sách bài tập hình học 12. Cho hình chóp S.ABC có SA vuông góc với đáy. Mặt phẳng qua A và vuông góc với SC...

    Đề bài

    Cho hình chóp \(S.ABC\) có \(SA\) vuông góc với đáy. Mặt phẳng qua \(A\) và vuông góc với \(SC\) cắt \(SB,SC\) lần lượt tại \(M,N\). Biết rằng \(SA = AC = 5\), \(AB = 3,BC = 4\). Thể tích khối chóp \(S.AMN\) bằng

    A. \(\dfrac{{125}}{{68}}\)                     B. \(\dfrac{{125}}{{34}}\)

    C. \(\dfrac{{175}}{{34}}\)                     D. \(\dfrac{{125}}{{17}}\)

    Phương pháp giải - Xem chi tiết

    - Tính tỉ số diện tích hai tam giác \(SMN\) và \(SBC\).

    - Từ đó suy ra tỉ số thể tích khối chóp \(S.AMN\) so với \(S.ABC\).

    - Tính \({V_{S.ABC}}\) và kết luận.

    Lời giải chi tiết

    Ta có: \(SC \bot \left( {AMN} \right) \Rightarrow \left\{ \begin{array}{l}SC \bot AM\\SC \bot MN\end{array} \right.\).

    Tam giác \(ABC\) có:

    \(A{C^2} =5^2=25\)

    \(A{B^2} + B{C^2}=3^2+4^2=25 \)

    nên \(AC^2=AB^2+BC^2\) hay tam giác ABC vuông tại \(B\).

    Suy ra \(AB \bot BC\), mà \(SA \bot BC\) nên \(BC \bot \left( {SAB} \right) \Rightarrow BC \bot SB\).

    Xét tam giác SMN và SCB có: \(\widehat {SNM} = \widehat {SBC} = {90^0}\) và chung góc S

    \( \Rightarrow \Delta SMN \backsim \Delta SCB\left( {g - g} \right)\) \( \Rightarrow \dfrac{{{S_{SMN}}}}{{{S_{SCB}}}} = {\left( {\dfrac{{SN}}{{SB}}} \right)^2}\)

    Tam giác \(SAC\) vuông cân tại \(A\) có \(AN \bot SC\) \( \Rightarrow SN = \dfrac{1}{2}SC = \dfrac{1}{2}\sqrt {{5^2} + {5^2}}  = \dfrac{{5\sqrt 2 }}{2}\).

    Tam giác \(SAB\) có \(SA = 5,AB = 3 \Rightarrow SB = \sqrt {34} \)

    \( \Rightarrow \dfrac{{{S_{SMN}}}}{{{S_{SCB}}}} = {\left( {\dfrac{{SN}}{{SB}}} \right)^2} = \dfrac{{25}}{{68}}\)\( \Rightarrow \dfrac{{{V_{S.AMN}}}}{{{V_{S.ABC}}}} = \dfrac{{25}}{{68}}\).

    Mà \({V_{S.ABC}} = \dfrac{1}{3}SA.{S_{ABC}} \) \(= \dfrac{1}{3}.5.\dfrac{1}{2}.3.4 = 10\) nên \({V_{S.AMN}} = \dfrac{{25}}{{68}}.10 = \dfrac{{125}}{{34}}\).

    Chọn B.

    Xemloigiai.com

    SBT Toán lớp 12

    Giải sách bài tập toán hình học và giải tích lớp 12. Giải chi tiết tất cả câu hỏi trong các chương và bài chi tiết trong SBT hình học và giải tích toán 12 cơ bản với cách giải nhanh và ngắn gọn nhất

    GIẢI TÍCH SBT 12

    HÌNH HỌC SBT 12

    Chương 1: Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số

    Chương 2: Hàm số lũy thừa. Hàm số mũ và hàm số Logarit

    Chương 3: Nguyên hàm, tích phân và ứng dụng

    Chương 4: Số phức

    Chương 1: Khối đa diện

    Chương 2: Mặt nón, mặt trụ, mặt cầu

    Chương 3: Phương pháp tọa độ trong không gian

    Ôn tập cuối năm Hình học 12