Bài 10 trang 55 Sách bài tập Hình học lớp 12 Nâng cao

Cho hình chóp S.ABCD.

    Cho hình chóp S.ABC. Biết rằng có một mặt cầu bán kính r tiếp xúc với các cạnh của hình chóp và tâm I của mặt cầu nằm trên đường cao SH của hình chóp.

    1) Chứng minh rằng S.ABC là hình chóp đều.

    2) Tính đường cao của hình chóp biết rằng \({\rm{IS = r}}\sqrt 3 .\)

    Giải

    1)

    Vì các cạnh của hình chóp tiếp xúc với mặt cầu nên

    SA+BC = SB+AC = SC+AB

    Mặt khác , tâm I của mặt cầu thuộc đường cao SH nên dễ thấy  \(\widehat {ISA} = \widehat {ISB} = \widehat {ISC},\) tức là \(\widehat {HSB} = \widehat {HSA} = \widehat {HSC},\) từ đó SA=SB=SC.

    Vậy AB = BC = CA, từ đó S.ABC là hình chóp đều.

    2)

    Đặt SH = h.

    Gọi M là trung điểm của BC thì mp(SAM) cắt mặt cầu theo đường tròn lớn, đường tròn này tiếp xúc với SA tại A1, đi qua điểm M và cắt AM tại M1, dễ thấy AM= M1H = HM.

    Vì \(\Delta S{A_1}I \sim \Delta SHA\) nên \({{{A_1}I} \over {SI}} = {{AH} \over {SA}},\)

    Từ đó \({r \over {r\sqrt 3 }} = {{AH} \over {\sqrt {{h^2} + A{H^2}} }}.\)

    Từ AH = 2M1H suy ra

    \(\eqalign{  & A{H^2} = 4{M_1}{H^2} = 4(IM_1^2 - I{H^2}).  \cr  &  = 4\left[ {{r^2} - {{(h - r\sqrt 3 )}^2}} \right]. \cr} \)

    Vậy

    \(\eqalign{  & {1 \over {\sqrt 3 }} = {{2\sqrt {{r^2} - {{(h - r\sqrt 3 )}^2}} } \over {\sqrt {{h^2} + 4\left[ {{r^2} - {{(h - r\sqrt 3 )}^2}} \right]} }}  \cr  &  \Leftrightarrow 9{h^2} - 16rh\sqrt 3  + 16{r^2} = 0  \cr  &  \Leftrightarrow h = {{4r} \over {\sqrt 3 }}(do\;\,h > {\rm{IS > r)}}{\rm{.}} \cr} \)

    Xemloigiai.com

    SBT Toán 12 Nâng cao

    Lời giải chi tiết, đáp án bài tập SBT Giải tích, Hình học 12 Nâng cao. Tất cả lý thuyết, bài tập vận dụng, thực hành Toán 12 Nâng cao

    PHẦN SBT GIẢI TÍCH 12 NÂNG CAO

    PHẦN SBT HÌNH HỌC 12 NÂNG CAO

    CHƯƠNG I: ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ

    CHƯƠNG II: HÀM SỐ LŨY THỪA, HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT

    CHƯƠNG III: NGUYÊN HÀM, PHÂN TÍCH VÀ ỨNG DỤNG

    CHƯƠNG IV: SỐ PHỨC

    CHƯƠNG I: KHỐI ĐA DIỆN VÀ THỂ TÍCH CỦA CHÚNG

    CHƯƠNG II: MẶT CẦU, MẶT TRỤ, MẶT NÓN

    CHƯƠNG III: PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN