Bài 1.76 trang 40 SBT giải tích 12

Giải bài 1.76 trang 40 sách bài tập giải tích 12. Xác định m để hàm số đơn điệu trên R...

    Cho hàm số: \(y =  - ({m^2} + 5m){x^3} + 6m{x^2} + 6x - 5\)

    LG a

    Xác định \(m\) để hàm số đơn điệu trên \(\mathbb{R}\). Khi đó, hàm số đồng biến hay nghịch biến? Tại sao?

    Phương pháp giải:

    - Tính \(y'\).

    - Hàm số đơn điệu trên \(\mathbb{R}\) \( \Leftrightarrow y'\) không đổi dấu trên \(\mathbb{R}\).

    Lời giải chi tiết:

    Ta có: \(y' =  - 3({m^2} + 5m){x^2} + 12mx + 6\)

    Hàm số đơn điệu trên \(\mathbb{R}\) khi và chỉ khi \(y'\) không đổi dấu.

    Ta xét các trường hợp:

    +) \({m^2} + 5m = 0 \Leftrightarrow \left[ \begin{array}{l}m = 0\\m =  - 5\end{array} \right.\)

    - Với \(m = 0\) thì \(y' = 6 > 0\) nên hàm số luôn đồng biến (thỏa mãn)

    - Với \(m =  - 5\) thì \(y' =  - 60x + 6\) đổi dấu khi \(x\) đi qua \(\dfrac{1}{{10}}\) nên hàm số không đơn điệu trên \(\mathbb{R}\) (loại).

    +) Với \({m^2} + 5m \ne 0 \Leftrightarrow \left\{ \begin{array}{l}m \ne 0\\m \ne  - 5\end{array} \right.\).

    Khi đó, \(y'\) không đổi dấu nếu \(\Delta ' = 36{m^2} + 18({m^2} + 5m) \le 0\)

    \(\begin{array}{l}
    \Leftrightarrow 36{m^2} + 18{m^2} + 90m \le 0\\
    \Leftrightarrow 54{m^2} + 90m \le 0
    \end{array}\)

    \( \Leftrightarrow 3{m^2} + 5m \le 0\)\( \Leftrightarrow  - \dfrac{5}{3} \le m \le 0\)

    Kết hợp với \(m\ne 0\) ta được \( - \frac{5}{3} \le m < 0\)

    Với \( - \frac{5}{3} \le m < 0\) thì \({m^2} + 5m < 0\) nên \( - 3({m^2} + 5m) > 0\)

    Do đó \(y' > 0\) và hàm số đồng biến trên \(\mathbb{R}\).

    Kết hợp với m = 0 ở trên ta được \( - \dfrac{5}{3} \le m \le 0\) thì hàm số đồng biến trên \(\mathbb{R}\).


    LG b

    Với giá trị nào của \(m\) thì hàm số đạt cực đại tại \(x = 1\)?

    Phương pháp giải:

    Hàm số đạt cực đại tại \(x = {x_0}\) thì \(\left\{ \begin{array}{l}f'\left( {{x_0}} \right) = 0\\f''\left( {{x_0}} \right) < 0\end{array} \right.\)

    Lời giải chi tiết:

    Nếu hàm số đạt cực đại tại \(x = 1\) thì \(y'\left( 1 \right) = 0\)\( \Leftrightarrow  - 3{m^2} - 3m + 6 = 0\)\( \Leftrightarrow \left[ \begin{array}{l}m = 1\\m =  - 2\end{array} \right.\)

    Mặt khác, \(y'' =  - 6({m^2} + 5m)x + 12m\)

    +) Với \(m = 1\;\) thì \(y'' =  - 36x + 12\). Khi đó, \(y''\left( 1 \right) =  - 24 < 0\), hàm số đạt cực đại tại \(x = 1\).

    +) Với \(m =  - 2\) thì \(y'' = 36x-24\). Khi đó, \(y''\left( 1 \right) = 12 > 0\), hàm số đạt cực tiểu tại \(x = 1\).

    Vậy với \(m = 1\;\) thì hàm số đạt cực đại tại \(x = 1\).

    Xemloigiai.com

    SBT Toán lớp 12

    Giải sách bài tập toán hình học và giải tích lớp 12. Giải chi tiết tất cả câu hỏi trong các chương và bài chi tiết trong SBT hình học và giải tích toán 12 cơ bản với cách giải nhanh và ngắn gọn nhất

    GIẢI TÍCH SBT 12

    HÌNH HỌC SBT 12

    Chương 1: Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số

    Chương 2: Hàm số lũy thừa. Hàm số mũ và hàm số Logarit

    Chương 3: Nguyên hàm, tích phân và ứng dụng

    Chương 4: Số phức

    Chương 1: Khối đa diện

    Chương 2: Mặt nón, mặt trụ, mặt cầu

    Chương 3: Phương pháp tọa độ trong không gian

    Ôn tập cuối năm Hình học 12