Câu 83 trang 130 Sách bài tập Hình học 11 Nâng cao

Giải bài tập Câu 83 trang 130 Sách bài tập Hình học 11 Nâng cao

    Đề bài

    Cho hình lập phương ABCD.A’B’C’D’ cạnh a. Gọi I là điểm thuộc AB; đặt \(AI = x\left( {0 < x < a} \right)\).

    a) Khi góc giữa hai đường thẳng AC’ và DI bằng 60°, hãy xác định vj trí của điểm I.

    b) Tính theo a và x diện tích thiết diện của hình lập phương khi cắt bởi mặt phẳng (B’DI). Tìm x để diện tích ấy là nhỏ nhấ.

    c) Tính khoảng cách từ đến mặt phẳng (B’DI) theo a và x.

    Lời giải chi tiết

     

    a) Cách 1.

    Đặt α là góc giữa DI và AC’ thì

    \(\eqalign{  & \cos \alpha  = {{\left| {\overrightarrow {DI} .\overrightarrow {AC'} } \right|} \over {\left| {\overrightarrow {DI} } \right|.\left| {\overrightarrow {AC'} } \right|}}  \cr  &  = {{\left( {\overrightarrow {DA}  + \overrightarrow {AI} } \right)\left( {\overrightarrow {AD}  + \overrightarrow {AB}  + \overrightarrow {AA'} } \right)} \over {\left| {\overrightarrow {DI} } \right|.\left| {\overrightarrow {AC'} } \right|}}  \cr  &  = {{\left| { - {a^2} + xa} \right|} \over {\sqrt {{a^2} + {x^2}.a\sqrt 3 } }} = {{\left| { - a + x} \right|} \over {\sqrt 3 .\sqrt {{a^2} + {x^2}} }} \cr} \)

    Khi ấy \(\alpha  = {60^0}\) khi và chỉ khi

    \(\eqalign{  & {{\left| { - a + x} \right|} \over {\sqrt 3 .\sqrt {{a^2} + {x^2}} }} = {1 \over 2}  \cr  &  \Leftrightarrow {x^2} - 8ax + {a^2} = 0  \cr  &  \Leftrightarrow x = a\left( {4 - \sqrt {15} } \right)\,\,\,\left( {vì\,\,0 < x < a} \right) \cr} \)

    Hệ thức trên xác định vị trí điểm I.

    Cách 2.

    Kẻ \(II'//AA'\left( {I' \in A'B'} \right),C'J//D'I'\) (I’ thuộc đường thẳng A’B’) thì \(\widehat {AC'J}\) hoặc \({180^0} - \widehat {AC'J}\) là góc giữa hai đường thẳng AC’ và DI với B’J = x.

    Do giả thiết góc giữa hai đường thẳng AC’ và DI bằng 60° nên \(\widehat {AC'J} = {60^0}\) hoặc 120°.

    Ta có :

    \(\eqalign{  & A{J^2} = AA{'^2} + A'{J^2} = {a^2} + {\left( {a + x} \right)^2}  \cr  & AC{'^2} = 3{a^2},C'{J^2} = {a^2} + {x^2} \cr} \)

    - Trường hơp \(\widehat {AC'J} = {60^0}\), ta có

    \(A{J^2} = AC{'^2} + C'{J^2} - 2AC'.C'J.{1 \over 2}\)

    hay

    \(\eqalign{& {a^2} + {\left( {a + x} \right)^2} \cr & = 3{a^2} + {a^2} + {x^2} - 2a\sqrt 3 .\sqrt {{a^2} + {x^2}.{1 \over 2}} \cr & \Leftrightarrow {x^2} - 8ax + {a^2} = 0 \cr & \Rightarrow x = \left( {4 - \sqrt {15} } \right)a\,\,\left( {vì\,0 < x < a} \right) \cr}\)

    Trường hợp \(\widehat {AC'J} = {120^0}\), ta có

    \(\eqalign{& {a^2} + {\left( {a + x} \right)^2} \cr & = 3{{\rm{a}}^2} + {a^2} + {x^2} + 2{\rm{a}}\sqrt 3 .\sqrt {{a^2} + {x^2}} .{1 \over 2} \cr & \Leftrightarrow 2ax = 2{a^2} + a\sqrt 3 .\sqrt {{a^2} + {x^2}} \cr & \Leftrightarrow 2\left( {x - a} \right) = \sqrt 3 .\sqrt {{a^2} + {x^2}} \cr} \)

    Điều này không xảy ra vì 0 < x < a.

    Vậy khi \(x = \left( {4 - \sqrt {15} } \right)a\) thì góc giữa DI và AC’ bằng 60°.

    b) Gọi

    \(\eqalign{  & E = DI \cap CB  \cr  & F = B'E \cap CC'  \cr  & K = DF \cap D'C' \cr} \)

    thì thiết diện của hình lập phương khi cắt bởi mp(B’DI) là tứ giác DIB’K.

    Dễ thấy đó là hình bình hành

    \({S_{DIB'K}} = 2{{\rm{S}}_{B'I{\rm{D}}}}\)

    \(= 2.{1 \over 2}\sqrt {{{\overrightarrow {IB'} }^2}.{{\overrightarrow {I{\rm{D}}} }^2} - {{\left( {\overrightarrow {IB'} .\overrightarrow {I{\rm{D}}} } \right)}^2}} \)

    Mặt khác \({\overrightarrow {I{\rm{D}}} ^2}.{\overrightarrow {IB'} ^2} = \left( {{a^2} + {x^2}} \right)\left[ {{a^2} + {{\left( {a - x} \right)}^2}} \right]\)

    và \(\eqalign{  & {\left( {\overrightarrow {I{\rm{D}}} .\overrightarrow {IB'} } \right)^2} = {\left[ {\left( {\overrightarrow {IA}  + \overrightarrow {A{\rm{D}}} } \right)\left( {\overrightarrow {IB}  + \overrightarrow {BB'} } \right)} \right]^2}  \cr  &  = {\left( {\overrightarrow {IA} .\overrightarrow {IB} } \right)^2} = {\left[ { - x{{\left( {a - x} \right)}^2}} \right]^2} = {x^2}{\left( {a - x} \right)^2} \cr} \)

    Từ đó

    \(\eqalign{  & {S_{DIB'K}} = \sqrt {{a^4} + {a^2}{x^2} + {a^2}{{\left( {a - x} \right)}^2}}   \cr  &  = a\sqrt {{a^2} + {x^2} + {{\left( {a - x} \right)}^2}}  \cr} \)

    Dễ thấy \({S_{DIB'K}}\) đạt giá trị nhỏ nhất khi \(x = {a \over 2}\) .

    c) Gọi khoảng cách từ C đến mp(B’ID), do tứ diện CDEF có CD, CE , CF đôi một vuông góc nên

    \({1 \over {{h^2}}} = {1 \over {C{{\rm{D}}^2}}} + {1 \over {C{E^2}}} + {1 \over {C{F^2}}}\).

    Mặt khác do AD // BE nên \({a \over {BE}} = {x \over {a - x}}\).

    từ đó \(BE = {{a\left( {a - x} \right)} \over x}\)

    và \(CE = a + {{a\left( {a - x} \right)} \over x} = {{{a^2}} \over x}\).

    Tương tự như trên, ta có \(C'F = {{ax} \over {a - x}}\) từ đó

    \(CF = a + {{ax} \over {a - x}} = {{{a^2}} \over {a - x}}\).

    Như vậy \({1 \over {{h^2}}} = {1 \over {{a^2}}} + {{{x^2}} \over {{a^4}}} + {{{{\left( {a - x} \right)}^2}} \over {{a^4}}}\)

    do vậy \(h = {{{a^2}} \over {\sqrt {{a^2} + {x^2} + {{\left( {a - x} \right)}^2}} }}\)

    Xemloigiai.com

    SBT Toán lớp 11 Nâng cao

    Giải sách bài tập toán hình học và đại số lớp 11. Giải chi tiết tất cả câu hỏi trong các chương và bài chi tiết trong SBT hình học và đại số toán 11 nâng cao với cách giải nhanh và ngắn gọn nhất

    ĐẠI SỐ VÀ GIẢI TÍCH SBT 11 NÂNG CAO

    HÌNH HỌC SBT 11 NÂNG CAO

    CHƯƠNG 1: HÀM SỐ LƯỢNG GIÁC VÀ PHƯƠNG TRÌNH LƯỢNG GIÁC

    CHƯƠNG 2: TỔ HỢP VÀ XÁC SUẤT

    CHƯƠNG 3: DÃY SỐ, CẤP SỐ CỘNG VÀ CẤP SỐ NHÂN

    CHƯƠNG 4: GIỚI HẠN

    CHƯƠNG 5: ĐẠO HÀM

    CHƯƠNG 1: PHÉP DỜI HÌNH VÀ PHÉP ĐỒNG DẠNG

    CHƯƠNG 2: ĐƯỜNG THẲNG VÀ MẶT PHẲNG TRONG KHÔNG GIAN. QUAN HỆ SONG SONG

    CHƯƠNG 3. VECTƠ KHÔNG GIAN. QUAN HỆ VUÔNG GÓC

    Lớp 11 | Các môn học Lớp 11 | Giải bài tập, đề kiểm tra, đề thi Lớp 11 chọn lọc

    Danh sách các môn học Lớp 11 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.

    Toán Học

    Vật Lý

    Hóa Học

    Ngữ Văn

    Sinh Học

    GDCD

    Tin Học

    Tiếng Anh

    Công Nghệ

    Lịch Sử & Địa Lý

    Tác giả & Tác phẩm