Các dạng toán về bất phương trình logarit
Dạng 1: Giải bất phương trình logarit.
Phương pháp:
- Bước 1: Đặt điều kiện cho ẩn để các biểu thức có nghĩa.
- Bước 2: Sử dụng các phép biến đổi: đưa về cùng cơ số, đặt ẩn phụ, đưa về dạng tích, mũ hóa, dùng hàm số,…để giải bất phương trình.
- Bước 3: Kiểm tra điều kiện và kết luận tập nghiệm.

Khi giải bất phương trình logarit cần chú ý đến điều kiện của cơ số \(a\).
Ví dụ 1: Tập nghiệm của bất phương trình \({\log _2}x \ge {\log _2}\left( {2x - 1} \right)\) là:
A. \(\left( { - \infty ;1} \right]\)
B. \(\left( {\dfrac{1}{2};1} \right]\)
C. \(\left( {0;1} \right)\)
D. \(\left[ {\dfrac{1}{2};1} \right)\)
Phương pháp:
Sử dụng phương pháp giải bất phương trình logarit với cơ số \(a > 1\): \({\log _a}f\left( x \right) \ge {\log _a}g\left( x \right) \Leftrightarrow f\left( x \right) \ge g\left( x \right)\) .
Cách giải:
Điều kiện xác định: \(\left\{ \begin{array}{l}x > 0\\2x - 1 > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x > 0\\x > \dfrac{1}{2}\end{array} \right. \Leftrightarrow x > \dfrac{1}{2}\).
Khi đó, \({\log _2}x \ge {\log _2}\left( {2x - 1} \right) \Leftrightarrow x \ge 2x - 1 \Leftrightarrow - x \ge - 1 \Leftrightarrow x \le 1\).
Kết hợp với điều kiện xác định ta được \(\dfrac{1}{2} < x \le 1\).
Vậy tập nghiệm của bất phương trình là \(\left( {\dfrac{1}{2};1} \right]\).
Chọn B.
Chú ý khi giải:
Nhiều HS thường quên đặt điều kiện xác định, dẫn tới khi kết luận nghiệm chọn nhầm đáp án A.
Ví dụ 2: Tập nghiệm của bất phương trình: \({\log _{\dfrac{1}{4}}}x + {\log _{\dfrac{1}{2}}}x - 3 \le 0\) là:
A. \(\left( { - \infty ;\dfrac{1}{4}} \right]\)
B. \(\left( {0; + \infty } \right)\)
C. \(\left[ {\dfrac{1}{4}; + \infty } \right)\)
D. \(\left( { - \infty ; - 1} \right]\)
Phương pháp:
Đưa về cùng cơ số và biến đổi thành dạng tích rồi giải bất phương trình.
Cách giải:
Điều kiện: \(x > 0\)
\(\begin{array}{l}{\log _{\dfrac{1}{4}}}x + {\log _{\dfrac{1}{2}}}x - 3 \le 0 \Leftrightarrow {\log _{{{\left( {\dfrac{1}{2}} \right)}^2}}}x + {\log _{\dfrac{1}{2}}}x - 3 \le 0\\ \Leftrightarrow \dfrac{1}{2}{\log _{\dfrac{1}{2}}}x + {\log _{\dfrac{1}{2}}}x - 3 \le 0 \Leftrightarrow \dfrac{3}{2}{\log _{\dfrac{1}{2}}}x \le 3 \Leftrightarrow {\log _{\dfrac{1}{2}}}x \le 2 \Leftrightarrow x \ge \dfrac{1}{4}\end{array}\)
Kết hợp điều kiện \(x > 0\) ta được \(x \ge \dfrac{1}{4}\).
Vậy tập nghiệm của bất phương trình là \(\left[ {\dfrac{1}{4}; + \infty } \right)\).
Chọn C.
Dạng 2: Tìm điều kiện của tham số để bất phương trình có nghiệm.
Phương pháp:
- Bước 1: Đặt điều kiện cho ẩn để các biểu thức có nghĩa.
- Bước 2: Biến đổi bất phương trình đã cho, nêu điều kiện để bất phương trình có nghiệm hoặc biện luận theo \(m\) nghiệm của bất phương trình.
- Bước 3: Giải điều kiện ở trên để tìm và kết luận điều kiện tham số.
Ví dụ: Tìm giá trị lón nhất của \(m\) để bất phương trình \(1 + {\log _5}\left( {{x^2} + 1} \right) \ge {\log _5}\left( {m{x^2} + 4x + m} \right)\) nghiệm đúng với mọi \(x \in R\).
A. \(m = 4\)
B. \(m = 2\)
C. \(m = 5\)
D. \(m = 3\)
Phương pháp:
- Đặt điều kiện cho ẩn để các biểu thức xác định.
- Biến đổi bất phương trình về cùng cơ số \(5\), nêu điều kiện để bất phương trình nghiệm đúng với mọi \(x\).
- Giải điều kiện trên suy ra \(m\).
Cách giải:
Điều kiện: \(m{x^2} + 4x + m > 0,\forall x \Leftrightarrow \left\{ \begin{array}{l}m > 0\\\Delta ' = 4 - {m^2} < 0\end{array} \right. \Leftrightarrow m > 2\)
Ta có:
\(\begin{array}{l}1 + {\log _5}\left( {{x^2} + 1} \right) \ge {\log _5}\left( {m{x^2} + 4x + m} \right) \Leftrightarrow {\log _5}5 + {\log _5}\left( {{x^2} + 1} \right) \ge {\log _5}\left( {m{x^2} + 4x + m} \right)\\ \Leftrightarrow 5{x^2} + 5 \ge m{x^2} + 4x + m \Leftrightarrow \left( {m - 5} \right){x^2} + 4x + m - 5 \le 0,\forall x \in R\\ \Leftrightarrow \left\{ \begin{array}{l}m - 5 < 0\\\Delta ' = 4 - {\left( {m - 5} \right)^2} \le 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m < 5\\ - {m^2} + 10m - 21 \le 0\end{array} \right. \Leftrightarrow m \le 3\end{array}\)
Kết hợp với điều kiện trên ta được \(2 < m \le 3\).
Do đó giá trị lớn nhất của \(m\) thỏa mãn là \(m = 3\).
Chọn D.
- Trả lời câu hỏi 1 trang 86 SGK Giải tích 12
- Trả lời câu hỏi 2 trang 87 SGK Giải tích 12
- Trả lời câu hỏi 3 trang 88 SGK Giải tích 12
- Trả lời câu hỏi 4 trang 89 SGK Giải tích 12
- Giải bài 1 trang 89 SGK Giải tích 12
- Giải bài 2 trang 90 SGK Giải tích 12
SGK Toán lớp 12
Giải bài tập toán lớp 12 như là cuốn để học tốt Toán lớp 12. Tổng hợp công thức, lý thuyết, phương pháp giải bài tập giải tích và hình học SGK Toán lớp 12, giúp ôn luyện thi THPT Quốc gia. Giai toan 12 xem mục lục giai toan lop 12 sach giao khoa duoi day
GIẢI TÍCH 12
- CHƯƠNG I. ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ
- CHƯƠNG II. HÀM SỐ LŨY THỪA HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT
- CHƯƠNG III. NGUYÊN HÀM - TÍCH PHÂN VÀ ỨNG DỤNG
- CHƯƠNG IV. SỐ PHỨC
- ÔN TẬP CUỐI NĂM - GIẢI TÍCH 12
HÌNH HỌC 12
- CHƯƠNG I. KHỐI ĐA DIỆN
- CHƯƠNG II. MẶT NÓN, MẶT TRỤ, MẶT CẦU
- CHƯƠNG III. PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN
- ÔN TẬP CUỐI NĂM - HÌNH HỌC 12
CHƯƠNG I. ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ
- Bài 1. Sự đồng biến, nghịch biến của hàm số
- Bài 2. Cực trị của hàm số
- Bài 3. Giá trị lớn nhất và giá trị nhỏ nhất của hàm số
- Bài 4. Đường tiệm cận
- Bài 5. Khảo sát sự biến thiên và vẽ đồ thị của hàm số
- Ôn tập Chương I - Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm sô
CHƯƠNG II. HÀM SỐ LŨY THỪA HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT
- Bài 1. Lũy thừa
- Bài 2. Hàm số lũy thừa
- Bài 3. Lôgarit
- Bài 4. Hàm số mũ, hàm số lôgarit
- Bài 5. Phương trình mũ và phương trình lôgarit
- Bài 6. Bất phương trình mũ và bất phương trình lôgarit
- Ôn tập Chương II - Hàm số lũy thừa, hàm số mũ và hàm số lôgarit
CHƯƠNG III. NGUYÊN HÀM - TÍCH PHÂN VÀ ỨNG DỤNG
- Bài 1. Nguyên hàm
- Bài 2. Tích phân
- Bài 3. Ứng dụng của tích phân trong hình học.
- Ôn tập Chương III - Nguyên hàm - Tích phân và ứng dụng
CHƯƠNG IV. SỐ PHỨC
- Bài 1. Số phức
- Bài 2. Cộng, trừ và nhân số phức
- Bài 3. Phép chia số phức
- Bài 4. Phương trình bậc hai với hệ số thực
- Ôn tập Chương IV - Số phức
CHƯƠNG I. KHỐI ĐA DIỆN
- Bài 1. Khái niệm về khối đa diện
- Bài 2. Khối đa diện lồi và khối đa diện đều
- Bài 3. Khái niệm về thể tích của khối đa diện
- Ôn tập chương I - Khối đa diện
CHƯƠNG II. MẶT NÓN, MẶT TRỤ, MẶT CẦU
CHƯƠNG III. PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN
- Bài 1. Hệ tọa độ trong không gian
- Bài 2. Phương trình mặt phẳng
- Bài 3. Phương trình đường thẳng trong không gian
- Ôn tập chương III - Phương pháp toạ độ trong không gian
Xem Thêm
Lớp 12 | Các môn học Lớp 12 | Giải bài tập, đề kiểm tra, đề thi Lớp 12 chọn lọc
Danh sách các môn học Lớp 12 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2025 ngắn gọn, chi tiết dễ hiểu.
Toán Học
Vật Lý
Hóa Học
Ngữ Văn
- Soạn văn 12
- SBT Ngữ văn lớp 12
- Văn mẫu 12
- Soạn văn 12 chi tiết
- Soạn văn ngắn gọn lớp 12
- Soạn văn 12 siêu ngắn
Sinh Học
GDCD
Tin Học
Tiếng Anh
- SBT Tiếng Anh lớp 12
- Ngữ pháp Tiếng Anh
- SGK Tiếng Anh 12
- SBT Tiếng Anh lớp 12 mới
- SGK Tiếng Anh 12 Mới
Công Nghệ
Lịch Sử & Địa Lý
- Tập bản đồ Địa lí lớp 12
- SBT Địa lí lớp 12
- SGK Địa lí lớp 12
- Tập bản đồ Lịch sử lớp 12
- SBT Lịch sử lớp 12
- SGK Lịch sử lớp 12