Bài 79 trang 62 SGK giải tích 12 nâng cao

Cho hàm số : a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tiếp tuyến của đường cong (C) tại điểm cắt tiệm cận đứng và tiệm cận xiên tại hai điểm A và B. Chứng minh rằng M là trung điểm của đoạn thẳng AB và tam giác OAB có diện tích không phụ thuộc vào vị trí điểm M trên đường cong (C).

    Cho hàm số : \(y = f\left( x \right) = x + {1 \over x}\)

    LG a

    Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số.

    Lời giải chi tiết:

    Tập xác định: \(D = R\backslash \left\{ 0 \right\}\)

    \(\eqalign{
    & y' = 1 - {1 \over {{x^2}}} = {{{x^2} - 1} \over {{x^2}}} \cr 
    & y' = 0 \Leftrightarrow x = \pm 1 \cr} \)

    Hàm số đồng biến trên các khoảng: \(\left( { - \infty ; - 1} \right),\left( {1; + \infty } \right)\)

    Hàm số nghịch biến trên các khoảng: \(\left( { - 1;0} \right),\left( {0;1} \right)\)

    +) Cực trị:

     Hàm số đạt cực đại tại: \(x=-1 ; y(-1)= -2\)

    Hàm số đạt cực tiểu tại: \(x=1;y(1)=2\)

    +) Giới hạn:

    \(\mathop {\lim y}\limits_{x \to {0^ - }}  =  - \infty ;\mathop {\lim y}\limits_{x \to {0^ + }}  =  + \infty \)

    Tiệm cận đứng: \(x=0\)

    \(\mathop {\lim }\limits_{x \to  \pm \infty } y =  \pm \infty \)

    \(\mathop {\lim }\limits_{x \to \infty } (y - x) = \mathop {\lim }\limits_{x \to \infty } {1 \over x} = 0\)

    Tiệm cận xiên: \(y=x\)

    Bảng biến thiên:

    Đồ thị:


    LG b

    Tiếp tuyến của đường cong (C) tại điểm \(M\left( {{x_o};f\left( {{x_o}} \right)} \right)\) cắt tiệm cận đứng và tiệm cận xiên tại hai điểm A và B. Chứng minh rằng M là trung điểm của đoạn thẳng AB và tam giác OAB có diện tích không phụ thuộc vào vị trí điểm M trên đường cong (C).

    Lời giải chi tiết:

    Tiệm cận đứng x = 0; Tiệm cận xiên y = x.
    Ta có \(f\left( x \right) = 1 - {1 \over {{x^2}}}\).

    Phương trình tiếp tuyến của đường cong (C) tại điểm \(M\left( {{x_o};f\left( {{x_o}} \right)} \right)\) là \(y = \left( {1 - {1 \over {x_o^2}}} \right)\left( {x - {x_o}} \right) + {x_o} + {1 \over {{x_o}}}\)

    Thay x = 0 vào phương trình trên, ta được tung độ của điểm A:

    \({y_A} = \left( {1 - {1 \over {x_o^2}}} \right)\left( { - {x_o}} \right) + {x_o} + {1 \over {{x_o}}} \) \(= {2 \over {{x_o}}}\).

    Vậy \(A\left( {0;{2 \over {{x_o}}}} \right)\)

    Hoành độ của điểm B là nghiệm của phương trình

    \(\left( {1 - {1 \over {x_o^2}}} \right)\left( {x - {x_o}} \right) + {x_o} + {1 \over {{x_o}}} = x \)

    \(\Leftrightarrow  - {x \over {{x_o}}} + {2 \over {{x_o}}} = 0 \Leftrightarrow x = 2{x_o}\)

    \({x_B} = 2{x_o}\).

    Vậy \(B\left( {2{x_o};2{x_o}} \right)\)

    Ta có: \({x_M} = {x_o} = {{0 + 2{x_o}} \over 2} \) \(= {{{x_A} + {x_B}} \over 2}\)

    Vì ba điểm A, M, B thẳng hàng nên từ đó suy ra rằng M là trung điểm của đoạn thẳng AB.

    Ta thấy, khoảng cách từ B đến trục Oy bằng 2x0 là độ dài đường cao kẻ từ B của OAB, OA có độ dài bằng 2/x0 .
    Diện tích tam giác OAB là

    \(S = {1 \over 2}\left| {{y_A}} \right|\left| {{y_B}} \right| = {1 \over 2}\left| {{2 \over {{x_o}}}} \right|\left| {2{x_o} } \right|=2,\) với \(\forall {x_o} \ne 0\)

    Xemloigiai.com

    SGK Toán 12 Nâng cao

    Giải bài tập toán lớp 12 Nâng cao như là cuốn để học tốt Toán lớp 12 Nâng cao. Tổng hợp công thức, lý thuyết, phương pháp giải bài tập giải tích và hình học SGK Toán lớp 12 Nâng cao, giúp ôn luyện thi THPT Quốc gia

    GIẢI TÍCH 12 NÂNG CAO

    HÌNH HỌC 12 NÂNG CAO

    CHƯƠNG I. ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ

    CHƯƠNG II. HÀM SỐ LŨY THỪA, HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT

    CHƯƠNG III. NGUYÊN HÀM, TÍCH PHÂN VÀ ỨNG DỤNG

    CHƯƠNG IV. SỐ PHỨC

    ÔN TẬP CUỐI NĂM ĐẠI SỐ VÀ GIẢI TÍCH - TOÁN 12 NÂNG CAO

    CHƯƠNG I. KHỐI ĐA DIỆN VÀ THỂ TÍCH CỦA CHÚNG

    CHƯƠNG II. MẶT CẦU, MẶT TRỤ, MẶT NÓN

    CHƯƠNG III. PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN

    ÔN TẬP CUỐI NĂM HÌNH HỌC - TOÁN 12 NÂNG CAO