Bài 47 trang 126 Sách bài tập Hình học lớp 12 Nâng cao

a)Viết phương trình mp(P)

    a) Viết phương trình mp(P) chứa trục Oz và tạo với mặt phẳng \(\left( \alpha  \right)\) có phương trình \(2x + y - \sqrt 5 z = 0\) một góc \({60^0}.\)

    b) Viết phương trình mp(Q) đi qua A(3;0;0), C(0;0;1) và tạo với mặt phẳng (Oxy) góc \({60^0}.\)

    Giải

    a) Mặt phẳng (P) chứa Oz nên có dạng Ax+By=0\( \Rightarrow \overrightarrow {{n_P}}  = (A;B;0).\)

    Ta có \(\overrightarrow {{n_\alpha }}  = (2;1; - \sqrt 5 ).\) Theo giả thiết của bài toán :

    \(\eqalign{  & \left| {\cos \left( {\overrightarrow {{n_P}} ,\overrightarrow {{n_\alpha }} } \right)} \right| = {{\left| {2A + B} \right|} \over {\sqrt {{A^2} + {B^2}} .\sqrt {4 + 1 + 5} }} \cr&\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= \cos {60^0} = {1 \over 2}  \cr  &  \Leftrightarrow 2\left| {2A + B} \right| = \sqrt {10} .\sqrt {{A^2} + {B^2}}   \cr  &  \Leftrightarrow 6{A^2} + 16AB - 6{B^2} = 0. \cr} \)

    Lấy B = 1 ta có

    \(6{A^2} + 16A - 6 = 0 \Rightarrow \left[ \matrix{  {A_1} = {1 \over 3} \hfill \cr  {A_2} =  - 3. \hfill \cr}  \right.\)

    Vậy có hai mặt phẳng (P) :

    \({1 \over 3}x + y = 0; - 3x + y = 0.\)

    b) Mặt phẳng (Q) đi qua A, C và tạo với mp(Oxy) góc 600 nên (Q) cắt Oy tại điểm B(0;b;0) khác gốc O\( \Rightarrow b \ne 0.\)

    Khi đó phương trình của mặt phẳng (Q) là :

    \({x \over 3} + {y \over b} + {z \over 1} = 1\) hay \(bx +3y+ 3bz - 3b = 0\)

    \( \Rightarrow \overrightarrow {{n_Q}}  = (b;3;3b).\)

    Mặt phẳng (Oxy) có vec tơ pháp tuyến là \(\overrightarrow k (0;0;1).\) Theo giả thiết, ta có

    \(\eqalign{  & \left| {\cos \left( {\overrightarrow {{n_Q}} ,\overrightarrow k } \right)} \right| = \cos {60^0} \Leftrightarrow {{\left| {3b} \right|} \over {\sqrt {{b^2} + 9 + 9{b^2}} }} = {1 \over 2}  \cr  &  \Leftrightarrow \left| {6b} \right| = \sqrt {10{b^2} + 9}  \Leftrightarrow {b^2} = {9 \over {26}} \Leftrightarrow b =  \pm {3 \over {\sqrt {26} }}. \cr} \)

    Vậy có hai mặt phẳng (Q) :

    \(\eqalign{  & x - \sqrt {26} y + 3z - 3 = 0.  \cr  & x + \sqrt {26} y + 3z - 3 = 0. \cr} \)

    Xemloigiai.com

    SBT Toán 12 Nâng cao

    Lời giải chi tiết, đáp án bài tập SBT Giải tích, Hình học 12 Nâng cao. Tất cả lý thuyết, bài tập vận dụng, thực hành Toán 12 Nâng cao

    PHẦN SBT GIẢI TÍCH 12 NÂNG CAO

    PHẦN SBT HÌNH HỌC 12 NÂNG CAO

    CHƯƠNG I: ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ

    CHƯƠNG II: HÀM SỐ LŨY THỪA, HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT

    CHƯƠNG III: NGUYÊN HÀM, PHÂN TÍCH VÀ ỨNG DỤNG

    CHƯƠNG IV: SỐ PHỨC

    CHƯƠNG I: KHỐI ĐA DIỆN VÀ THỂ TÍCH CỦA CHÚNG

    CHƯƠNG II: MẶT CẦU, MẶT TRỤ, MẶT NÓN

    CHƯƠNG III: PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN