Bài 1 trang 80 SGK Hình học 12 Nâng cao

Cho các vectơ: a) Tìm toạ độ của các vectơ đó. b) Tìm côsin của các góc c) Tính các tích vô hướng

    Cho các vectơ: \(\overrightarrow u  = \overrightarrow i  - 2\overrightarrow j \,;\) \(\overrightarrow v  = 3\overrightarrow i  + 5\left( {\overrightarrow j  - \overrightarrow k } \right)\,;\) \(\overrightarrow {\rm{w}}  = 2\overrightarrow i  - \overrightarrow k  + 3\overrightarrow j \)

    LG a

    Tìm toạ độ của các vectơ đó.

    Phương pháp giải:

    Sử dụng lý thuyết:

    \(\begin{array}{l}
    \overrightarrow u = a\overrightarrow i + b\overrightarrow j + c\overrightarrow k \\
    \Rightarrow \overrightarrow u = \left( {a;b;c} \right)
    \end{array}\)

    Lời giải chi tiết:

    \(\begin{array}{l}
    \overrightarrow u = \overrightarrow i - 2\overrightarrow j \\= 1.\overrightarrow i + \left( { - 2} \right)\overrightarrow j + 0\overrightarrow k \\
    \Rightarrow \overrightarrow u = \left( {1; - 2;0} \right)\\
    \overrightarrow v = 3\overrightarrow i + 5\left( {\overrightarrow j - \overrightarrow k } \right) \\= 3\overrightarrow i + 5\overrightarrow j - 5\overrightarrow k \\
    \Rightarrow \overrightarrow v = \left( {3;5; - 5} \right)\\
    \overrightarrow k = 2\overrightarrow i - \overrightarrow k + 3\overrightarrow j \\= 2\overrightarrow i + 3\overrightarrow j - \overrightarrow k \\
    \Rightarrow \overrightarrow k = \left( {2;3; - 1} \right)
    \end{array}\)


    LG b

    Tìm côsin của các góc \(\left( {\overrightarrow v ,\overrightarrow i } \right)\,;\,\left( {\overrightarrow v ,\overrightarrow j } \right)\,;\,\left( {\overrightarrow v ,\overrightarrow k } \right)\).

    Phương pháp giải:

    Cô sin góc hợp bởi hai véc tơ:

    \(\begin{array}{l}
    \overrightarrow u = \left( {{a_1};{b_1};{c_1}} \right),\overrightarrow v = \left( {{a_2};{b_2};{c_2}} \right)\\
    \Rightarrow \cos \left( {\overrightarrow u ,\overrightarrow v } \right) = \frac{{\overrightarrow u .\overrightarrow v }}{{\left| {\overrightarrow u } \right|.\left| {\overrightarrow v } \right|}}\\
    = \frac{{{a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2}}}{{\sqrt {a_1^2 + b_1^2 + c_1^2} .\sqrt {a_2^2 + b_2^2 + c_2^2} }}
    \end{array}\)

    Lời giải chi tiết:

    Ta có: \(\overrightarrow i  = \left( {1;0;0} \right),\overrightarrow j \left( {0;1;0} \right),\) \(\overrightarrow k  = \left( {0;0;1} \right)\)

    \(\eqalign{
    & \cos \left( {\overrightarrow v ,\overrightarrow i } \right) = {{\overrightarrow v .\overrightarrow i } \over {\left| {\overrightarrow v } \right|\left| {\overrightarrow i } \right|}} \cr & = \frac{{3.1 + 5.0 - 5.0}}{{\sqrt {9 + 25 + 25} .\sqrt 1 }}= {3 \over {\sqrt {59} }} \cr 
    & \cos \left( {\overrightarrow v ,\overrightarrow j } \right) = {{\overrightarrow v .\overrightarrow j } \over {\left| {\overrightarrow v } \right|\left| {\overrightarrow j } \right|}} \cr & = \frac{{3.0 + 5.1 - 5.0}}{{\sqrt {9 + 25 + 25} .\sqrt 1 }}= {5 \over {\sqrt {59} }} \cr 
    & \cos \left( {\overrightarrow v ,\overrightarrow k } \right) = {{\overrightarrow v .\overrightarrow k } \over {\left| {\overrightarrow v } \right|\left| {\overrightarrow k } \right|}} \cr & = \frac{{3.0 + 5.0 - 5.1}}{{\sqrt {9 + 25 + 25} .\sqrt 1 }}= {{ - 5} \over {\sqrt {59} }} \cr} \)


    LG c

    Tính các tích vô hướng \(\overrightarrow u .\overrightarrow v \,,\,\overrightarrow u .\overrightarrow {\rm{w}} \,,\,\overrightarrow v .\overrightarrow {\rm{w}} \).

    Phương pháp giải:

    \(\begin{array}{l}
    \overrightarrow u = \left( {{a_1};{b_1};{c_1}} \right),\overrightarrow v = \left( {{a_2};{b_2};{c_2}} \right)\\
    \Rightarrow \overrightarrow u .\overrightarrow v = {a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2}
    \end{array}\)

    Lời giải chi tiết:

    \(\eqalign{
    & \overrightarrow u .\overrightarrow v = 1.3 - 2.5 + 0\left( { - 5} \right) = - 7 \cr 
    & \overrightarrow u .\overrightarrow w = 1.2 - 2.3 + 0\left( { - 1} \right) = - 4 \cr 
    & \overrightarrow v .\overrightarrow w = 3.2 + 5.3 + (-5).(-1) = 26 \cr} \)

    Xemloigiai.com

    SGK Toán 12 Nâng cao

    Giải bài tập toán lớp 12 Nâng cao như là cuốn để học tốt Toán lớp 12 Nâng cao. Tổng hợp công thức, lý thuyết, phương pháp giải bài tập giải tích và hình học SGK Toán lớp 12 Nâng cao, giúp ôn luyện thi THPT Quốc gia

    GIẢI TÍCH 12 NÂNG CAO

    HÌNH HỌC 12 NÂNG CAO

    CHƯƠNG I. ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ

    CHƯƠNG II. HÀM SỐ LŨY THỪA, HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT

    CHƯƠNG III. NGUYÊN HÀM, TÍCH PHÂN VÀ ỨNG DỤNG

    CHƯƠNG IV. SỐ PHỨC

    ÔN TẬP CUỐI NĂM ĐẠI SỐ VÀ GIẢI TÍCH - TOÁN 12 NÂNG CAO

    CHƯƠNG I. KHỐI ĐA DIỆN VÀ THỂ TÍCH CỦA CHÚNG

    CHƯƠNG II. MẶT CẦU, MẶT TRỤ, MẶT NÓN

    CHƯƠNG III. PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN

    ÔN TẬP CUỐI NĂM HÌNH HỌC - TOÁN 12 NÂNG CAO