Bài 11 trang 81 SGK Hình học 12 Nâng cao

Cho bốn điểm A(1 ; 0 ; 0), B(0 ; 1 ; 0), C(0 ; 0 ; 1) và D(-2 ; 1 ; -2). a) Chứng minh rằng A, B, C, D là bốn đỉnh của một hình tứ diện. b) Tính góc giữa các đường thẳng chứa các cạnh đối của tứ diện đó. c) Tính thể tích tứ diện ABCD và độ dài đường cao của tứ diện kẻ từ đỉnh A.

    Cho bốn điểm A(1 ; 0 ; 0), B(0 ; 1 ; 0), C(0 ; 0 ; 1) và D(-2 ; 1 ; -2).

    LG a

    Chứng minh rằng A, B, C, D là bốn đỉnh của một hình tứ diện.

    Phương pháp giải:

    Chứng minh \(\overrightarrow {AB} ,\overrightarrow {AC} ,\overrightarrow {AD} \) không đồng phẳng hay \(\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right].\overrightarrow {AD} \ne 0\)

    Lời giải chi tiết:

    Ta có: 

    \(\eqalign{
    & \overrightarrow {AB} = \left( { - 1;1;0} \right),\overrightarrow {AC} = \left( { - 1;0;1} \right),\cr &\overrightarrow {AD} = \left( { - 3;1; - 2} \right) \cr 
    & \left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] \cr &= \left( {\left| \matrix{
    1\,\,\,\,\,\,0 \hfill \cr 
    0\,\,\,\,\,1 \hfill \cr} \right|;\left| \matrix{
    0\,\,\,\, - 1 \hfill \cr 
    1\,\,\,\,\, - 1 \hfill \cr} \right|;\left| \matrix{
    - 1\,\,\,\,\,\,1 \hfill \cr 
    - 1\,\,\,\,\,\,\,0 \hfill \cr} \right|} \right) \cr &= \left( { 1;1; 1} \right) \cr 
    & \Rightarrow \left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right].\overrightarrow {AD} \cr &= 1 .(-3)+ 1.1 +1.(-2) = - 4 \ne 0 \cr} \)

    Do đó ba vectơ \(\overrightarrow {AB} ,\overrightarrow {AC} ,\overrightarrow {AD} \) không đồng phẳng. Vậy A, B, C, D là 4 đỉnh của một tứ diện.


    LG b

    Tính góc giữa các đường thẳng chứa các cạnh đối của tứ diện đó.

    Phương pháp giải:

    Sử dụng công thức tính cô sin góc giữa hai véc tơ \(\cos \left( {\overrightarrow u ,\overrightarrow v } \right) = \frac{{\overrightarrow u .\overrightarrow v }}{{\left| {\overrightarrow u } \right|.\left| {\overrightarrow v } \right|}}\)

    Lời giải chi tiết:

    Ta có \(\overrightarrow {CD}  = \left( { - 2;1; - 3} \right),\overrightarrow {BD}  = \left( { - 2;0; - 2} \right),\) \(\overrightarrow {BC}  = \left( {0; - 1;1} \right)\).

    Gọi \(\alpha ,\beta ,\gamma \) lần lượt là góc tạo bởi các cặp đường thẳng AB và CD, AC và BD, AD và BC thì

    \(\eqalign{
    & \cos \alpha = \left| {\cos \left( {\overrightarrow {AB} ,\overrightarrow {CD} } \right)} \right| \cr &= {{\left| {2 + 1 + 0} \right|} \over {\sqrt 2 .\sqrt {14} }} = {{3\sqrt 7 } \over {14}} \cr 
    & \cos \beta = \left| {\cos \left( {\overrightarrow {AC} ,\overrightarrow {BD} } \right)} \right|\cr & = {{\left| {2 + 0 - 2} \right|} \over {\sqrt 2 .\sqrt 8 }} = 0 \Rightarrow AC \bot BD \cr 
    & \cos \gamma = \left| {\cos \left( {\overrightarrow {AD} ,\overrightarrow {BC} } \right)} \right| \cr & = {{\left| {0 - 1 - 2} \right|} \over {\sqrt 2 .\sqrt {14} }} = {{3\sqrt 7 } \over {14}} \cr} \)


    LG c

    Tính thể tích tứ diện ABCD và độ dài đường cao của tứ diện kẻ từ đỉnh A.

    Phương pháp giải:

    Tính thể tích theo công thức \(V = {1 \over 6}\left| {\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right].\overrightarrow {AD} } \right|\)

    Lời giải chi tiết:

    Thể tích tứ diện ABCD là: \(V = {1 \over 6}\left| {\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right].\overrightarrow {AD} } \right| \) \(= {1 \over 6}\left| { - 4} \right| = {2 \over 3}\)

    Gọi \({h_A}\) là đường cao của tứ diện kẻ từ đỉnh A.
    Ta có:

    \(\eqalign{
    & V = {1 \over 3}{h_A}.{S_{BCD}} \Rightarrow {h_A} = {{3V} \over {{S_{BCD}}}} \cr 
    & {S_{BCD}} = {1 \over 2}\left| {\left[ {\overrightarrow {BC} ,\overrightarrow {BD} } \right]} \right| = \sqrt 3 \cr} \)

    Vậy \({h_A} = {{3.{2 \over 3}} \over {\sqrt 3 }} = {{2\sqrt 3 } \over 3}\)

    Xemloigiai.com

    SGK Toán 12 Nâng cao

    Giải bài tập toán lớp 12 Nâng cao như là cuốn để học tốt Toán lớp 12 Nâng cao. Tổng hợp công thức, lý thuyết, phương pháp giải bài tập giải tích và hình học SGK Toán lớp 12 Nâng cao, giúp ôn luyện thi THPT Quốc gia

    GIẢI TÍCH 12 NÂNG CAO

    HÌNH HỌC 12 NÂNG CAO

    CHƯƠNG I. ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ

    CHƯƠNG II. HÀM SỐ LŨY THỪA, HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT

    CHƯƠNG III. NGUYÊN HÀM, TÍCH PHÂN VÀ ỨNG DỤNG

    CHƯƠNG IV. SỐ PHỨC

    ÔN TẬP CUỐI NĂM ĐẠI SỐ VÀ GIẢI TÍCH - TOÁN 12 NÂNG CAO

    CHƯƠNG I. KHỐI ĐA DIỆN VÀ THỂ TÍCH CỦA CHÚNG

    CHƯƠNG II. MẶT CẦU, MẶT TRỤ, MẶT NÓN

    CHƯƠNG III. PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN

    ÔN TẬP CUỐI NĂM HÌNH HỌC - TOÁN 12 NÂNG CAO