Giải bài 2 trang 100,101 SGK Giải tích 12

Tìm nguyên hàm của các hàm số sau?

    Tìm nguyên hàm của các hàm số sau?

    LG a

    \(f(x) = \dfrac{x+\sqrt{x}+1}{^{\sqrt[3]{x}}}\);

    Phương pháp giải:

    +) Biến đổi biểu thức cần tính nguyên hàm về dạng cơ bản (chẳng hạn: đa thức)

    +) Sau đó sử dụng các công thức nguyên hàm cơ bản để làm bài toán: 

    \(\int {{x^n}dx}  = \frac{1}{{n + 1}}{x^{n + 1}} + C\)

    Lời giải chi tiết:

    Điều kiện \(x>0\). Thực hiện chia tử cho mẫu ta được:

    \(f(x) = \dfrac{x+x^{\frac{1}{2}}+1}{x^{\frac{1}{3}}} \\= x^{1-\frac{1}{3}}+ x^{\frac{1}{2}-\frac{1}{3}}+ x^{-\frac{1}{3}}\\ = x^{\frac{2}{3}}+ x^{\frac{1}{6}} + x^{-\frac{1}{3}}.\)

    \(\Rightarrow ∫f(x)dx = ∫(x^{\frac{2}{3}}+ x^{\frac{1}{6}} + x^{-\frac{1}{3}})dx \\ = \frac{{{x^{\frac{2}{3} + 1}}}}{{\frac{2}{3} + 1}} + \frac{{{x^{\frac{1}{6} + 1}}}}{{\frac{1}{6} + 1}} + \frac{{{x^{ - \frac{1}{3} + 1}}}}{{ - \frac{1}{3} + 1}} + C\\= \dfrac{3}{5}x^{\frac{5}{3}}+ \dfrac{6}{7}x^{\frac{7}{6}}+\dfrac{3}{2}x^{\frac{2}{3}} +C.\)


    LG b

    \( f(x)=\dfrac{2^{x}-1}{e^{x}}\)

    Phương pháp giải:

    Sử dụng công thức nguyên hàm:

    \[\int {{a^x}dx}  = \frac{{{a^x}}}{{\ln a}} + C\]

    \[\int {{e^{ax + b}}dx}  = \frac{{{e^{ax + b}}}}{a} + C\]

    Lời giải chi tiết:

    \(\begin{array}{l}\;\;f\left( x \right) = \dfrac{{{2^x} - 1}}{{{e^x}}} = {\left( {\dfrac{2}{e}} \right)^x} - {e^{ - x}}.\\ \Rightarrow F\left( x \right) = \int {f\left( x \right)dx}  \\= \int {\left( {{{\left( {\dfrac{2}{e}} \right)}^x} - {e^{ - x}}} \right)} dx\\= \dfrac{{{{\left( {\dfrac{2}{e}} \right)}^x}}}{{\ln \left( {\dfrac{2}{e}} \right)}} - \dfrac{{{e^{ - x}}}}{{ - 1}} + C \\= \dfrac{{{2^x}}}{{{e^x}\left( {\ln 2 - 1} \right)}} + e^{-x} + C\\= \dfrac{{{2^x} + \ln 2 - 1}}{{{e^x}\left( {\ln 2 - 1} \right)}} + C.\end{array}\)


    LG c

    \(f(x) = \dfrac{1}{sin^{2}x.cos^{2}x}\);

    Lời giải chi tiết:

    \(\begin{array}{l}f\left( x \right) = \dfrac{1}{{{{\sin }^2}x.{{\cos }^2}x}} \\= \dfrac{{{{\sin }^2}x + {{\cos }^2}x}}{{{{\sin }^2}x{{\cos }^2}x}} \\= \dfrac{{{{\sin }^2}x}}{{{{\sin }^2}x{{\cos }^2}x}} + \dfrac{{{{\cos }^2}x}}{{{{\sin }^2}x{{\cos }^2}x}} \\= \dfrac{1}{{{{\sin }^2}x}} + \dfrac{1}{{{{\cos }^2}x}}.\\\Rightarrow F\left( x \right) = \int {f\left( x \right)}dx \\= \int {\left( {\dfrac{1}{{{{\sin }^2}x}} + \dfrac{1}{{{{\cos }^2}x}}} \right)} dx \\ =  - \cot x + \tan x + C \\= \dfrac{{\sin x}}{{\cos x}} - \dfrac{{\cos x}}{{\sin x}} + C\\ = \dfrac{{{{\sin }^2}x - {{\cos }^2}x}}{{\sin x.\cos x}} + C \\= \dfrac{{ - \cos 2x}}{{\dfrac{1}{2}\sin 2x}} + C \\=  - 2\cot2 x + C.\end{array}\)

    Cách khác:

    \(\begin{array}{l}
    {\sin ^2}x{\cos ^2}x\\
    = \frac{1}{4}.4{\sin ^2}x{\cos ^2}x\\
    = \frac{1}{4}{\sin ^2}2x\\
    \Rightarrow \int {\frac{1}{{{{\sin }^2}x{{\cos }^2}x}}dx} \\
    = \int {\frac{1}{{\frac{1}{4}{{\sin }^2}2x}}dx} = \int {\frac{4}{{{{\sin }^2}2x}}dx} \\
    = 4.\left( { - \frac{{\cot 2x}}{2}} \right) + C\\
    = - 2\cot 2x + C
    \end{array}\)

    Ở đó sử dụng công thức

    \(\int {\frac{1}{{{{\sin }^2}\left( {ax + b} \right)}}dx}  =  - \frac{{\cot \left( {ax + b} \right)}}{a} + C\)


    LG d

    \(f(x) = sin5x.cos3x\)

    Phương pháp giải:

    Công thức phân tích tích thành tổng:

    \(\sin a\cos b \)\(= \dfrac{1}{2}\left( {\sin \left( {a + b} \right) + \sin \left( {a - b} \right)} \right)\)

    Lời giải chi tiết:

    Áp dụng công thức biến đổi tích thành tổng ta có:

    \(\begin{array}{l}f\left( x \right) = \sin 5x.\cos 3x \\= \dfrac{1}{2}\left( {\sin 8x + \sin 2x} \right).\\\Rightarrow F\left( x \right) = \int {f\left( x \right)dx}  \\= \int {\dfrac{1}{2}\left( {\sin 8x + \sin 2x} \right)dx} \\ = \dfrac{1}{2}\left( { - \dfrac{1}{8}\cos 8x - \dfrac{1}{2}\cos 2x} \right) + C\\ =  - \dfrac{1}{4}\left( {\dfrac{1}{4}\cos 8x + \cos 2x} \right) + C.\end{array}\)


    LG e

    \(f(x) = tan^2x\)        

    Phương pháp giải:

    Áp dụng công thức:

    \(\frac{1}{{{{\cos }^2}x}} = {\tan ^2}x + 1\)\( \Rightarrow {\tan ^2}x = \frac{1}{{{{\cos }^2}x}} - 1\)

    Nguyên hàm: \(\int {\dfrac{1}{{{{\cos }^2}x}}dx = \tan x + C}\)

    Lời giải chi tiết:

    \(\begin{array}{l}\;\;f\left( x \right) = {\tan ^2}x = \dfrac{1}{{{{\cos }^2}x}} - 1\\\Rightarrow F\left( x \right) = \int {f\left( x \right)dx} \\ = \int {\left( {\dfrac{1}{{{{\cos }^2}x}} - 1} \right)dx}\\  = \int {\dfrac{1}{{{{\cos }^2}x}}dx}  - \int {dx} \\= \tan x - x + C.\end{array}\)


    LG g

    \(f(x) = e^{3-2x}\)

    Lời giải chi tiết:

    \(\begin{array}{l}\;\;f\left( x \right) = {e^{3 - 2x}}.\\\Rightarrow F\left( x \right) = \int {f\left( x \right)dx = } \int {{e^{3 - 2x}}dx} \\=  - \dfrac{1}{2}\int {{e^{3 - 2x}}\left( {3 - 2x} \right)'dx} \\ =  - \dfrac{1}{2}{e^{3 - 2x}} + C.\end{array}\)


    LG h

    \(f(x) =\dfrac{1}{(1+x)(1-2x)}\) ;

    Lời giải chi tiết:

    Ta có : \(f\left( x \right) = \dfrac{1}{{\left( {1 + x} \right)\left( {1 - 2x} \right)}}\) \( = \dfrac{{1 - 2x + 2\left( {1 + x} \right)}}{{3\left( {1 + x} \right)\left( {1 - 2x} \right)}} \) \(= \dfrac{{1 - 2x}}{{3\left( {1 + x} \right)\left( {1 - 2x} \right)}} + \dfrac{{2\left( {1 + x} \right)}}{{3\left( {1 + x} \right)\left( {1 - 2x} \right)}}\) \( = \dfrac{1}{{3\left( {x + 1} \right)}} + \dfrac{2}{{3\left( {1 - 2x} \right)}}.\)

    \(\Rightarrow \int \dfrac{dx}{(1+x)(1-2x)}\)\(=\dfrac{1}{3}\int (\dfrac{1}{1+x}+\dfrac{2}{1-2x})dx \)

    \( = \dfrac{1}{3}\left( {\int {\dfrac{1}{{1 + x}}dx}  + \int {\dfrac{2}{{1 - 2x}}dx} } \right)\)

    Đặt \(1 + x = t \Rightarrow dx = dt\)

    \( \Rightarrow \int {\dfrac{1}{{1 + x}}dx}  = \int {\dfrac{1}{t}dt} \) \( = \ln \left| t \right| + {C_1} = \ln \left| {1 + x} \right| + {C_1}\)

    Đặt \(1 - 2x = t \Rightarrow  - 2dx = dt\)

    \( \Rightarrow \int {\dfrac{2}{{1 - 2x}}dx}  = \int {\dfrac{{ - dt}}{t}} \) \( =  - \ln \left| t \right| + {C_2} =  - \ln \left| {1 - 2x} \right| + {C_2}\)

    \(\begin{array}{l} \Rightarrow \dfrac{1}{3}\left( {\int {\dfrac{1}{{1 + x}}dx}  + \int {\dfrac{2}{{1 - 2x}}dx} } \right)\\ = \dfrac{1}{3}\left( {\ln \left| {1 + x} \right| - \ln \left| {1 - 2x} \right|} \right) + C\\ = \dfrac{1}{3}\ln \left| {\dfrac{{1 + x}}{{1 - 2x}}} \right| + C\end{array}\)

    Vậy \(\int {f\left( x \right)dx}  = \dfrac{1}{3}\ln \left| {\dfrac{{1 + x}}{{1 - 2x}}} \right| + C\)

    Xemloigiai.com

    SGK Toán lớp 12

    Giải bài tập toán lớp 12 như là cuốn để học tốt Toán lớp 12. Tổng hợp công thức, lý thuyết, phương pháp giải bài tập giải tích và hình học SGK Toán lớp 12, giúp ôn luyện thi THPT Quốc gia. Giai toan 12 xem mục lục giai toan lop 12 sach giao khoa duoi day

    GIẢI TÍCH 12

    HÌNH HỌC 12

    CHƯƠNG I. ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ

    CHƯƠNG II. HÀM SỐ LŨY THỪA HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT

    CHƯƠNG III. NGUYÊN HÀM - TÍCH PHÂN VÀ ỨNG DỤNG

    CHƯƠNG IV. SỐ PHỨC

    CHƯƠNG I. KHỐI ĐA DIỆN

    CHƯƠNG II. MẶT NÓN, MẶT TRỤ, MẶT CẦU

    CHƯƠNG III. PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN

    Xem Thêm