Bài 83 trang 99 SGK Toán 9 tập 2

a) Vẽ hình 62

    Đề bài

    a) Vẽ hình 62 (tạo bởi các cung tròn) với \(HI = 10cm\) và \(HO = 2cm\). Nêu cách vẽ.

    b) Tính diện tích hình \(HOABINH\) (miền gạch sọc)

    c) Chứng tỏ rằng hình tròn đường kính \(NA\) có cùng diện tích với hình \(HOABINH\) đó.

    Phương pháp giải - Xem chi tiết

    a) Vẽ các nửa đường tròn để tạo thành hình đã cho. Sử dụng thước thẳng và compa để vẽ hình.

    b) Sử dụng công thức tính diện tích hình tròn bán kính \(R\) là \(S = \pi {R^2}\) để suy ra diện tích miền gạch chéo. 

    Diện tích miền gạch sọc = Diện tích nửa đường tròn đường kính HI + Diện tích nửa đường tròn đường kính OB - Diện tích nửa đường tròn đường kính HO - Diện tích nửa đường tròn đường kính BI.

    c) Sử dụng công thức tính diện tích hình tròn bán kính \(R\) là \(S = \pi {R^2}\)

    Lời giải chi tiết

     

    a) + Vẽ đoạn thẳng \(HI = 10cm\), trên đoạn \(HI\) lấy hai điểm \(O\) và \(B\) sao cho \(HO = BI = 2cm\). Lấy \(D\) là trung điểm đoạn thẳng \(HI.\)

    + Trên cùng một nửa mặt phẳng bờ \(HI\), vẽ các nửa đường tròn đường kính \(HI;HO;BI\)

    + Trên nửa mặt phẳng còn lại ta vẽ nửa đường tròn đường kính \(OB.\)

    + Vẽ đường trung trực của đoạn \(HI\), đường thẳng này cắt nửa đường tròn đường kính \(HI\) tại \(N\) và cắt nửa đường tròn đường kính \(OB\) tại \(A.\)

    + Bỏ đi hai nửa hình tròn đường kính \(HO\) và \(BI\), gạch chéo phần hình còn lại vừa vẽ ta được hình theo yêu cầu.

    b) Theo cách dựng ta có: 

    Nửa hình tròn đường kính \(HO\) và \(BI\) đều có bán kính \(r = 2:2 = 1cm\). Hai nửa hình tròn này có diện tích bằng nhau và bằng \({S_3} = \dfrac{1}{2}\pi .{r^2} = \dfrac{1}{2}\pi \,\left( {c{m^2}} \right)\)  

    Nửa hình tròn đường kính \(HI\) có bán kính \(R = 10:2 = 5cm\) và có tâm \(D.\) Nửa hình tròn này có diện tích \({S_1} = \dfrac{1}{2}\pi {R^2} = \dfrac{1}{2}\pi {.5^2} = 12,5\pi \,\left( {c{m^2}} \right)\)

    Nửa hình tròn đường kính \(OB\) có tâm \(D\) và có bán kính \({r_2} = OB:2 = \left( {HI - HO - BI} \right):2 = \left( {10 - 2 - 2} \right):2 = 3cm\)

    Nửa hình tròn này có diện tích bằng \({S_2} = \dfrac{1}{2}\pi r_2^2 = \dfrac{1}{2}\pi {.3^2} = 4,5\pi \left( {c{m^2}} \right)\)

    Phần hình bị gạch chéo tạo bởi các nửa đường tròn bán kính \(5cm;3cm\) và \(1cm\).

    Diện tích phần bị gạch chéo là \(S = {S_1} - 2{S_3} + {S_2} = 12,5\pi  - 2.\dfrac{1}{2}\pi  + 4,5\pi  = 16\pi \left( {c{m^2}} \right)\)

    Vậy diện tích hình \(HOABINH\) là \(16\pi \left( {c{m^2}} \right)\)

    c) Ta có \(DN = R = 5cm;\,DA = {r_2} = 3cm \Rightarrow NA = 5 + 3 = 8cm\)

    Đường tròn đường kính \(NA\) có bán kính là \(R' = 8:2 = 4cm\)

    Diện tích hình tròn đường kính \(NA\) là \(S' = \pi {R'^2} = \pi {.4^2} = 16\pi \left( {c{m^2}} \right)\)

    Do đó  \(S = S'\)

    Vậy hình tròn đường kính \(NA\) có cùng diện tích với hình \(HOABINH\) đó.

    SGK Toán lớp 9

    Giải bài tập toán lớp 9 như là cuốn để học tốt Toán lớp 9. Tổng hợp công thức, lý thuyết, phương pháp giải bài tập đại số và hình học SGK Toán lớp 9 giúp luyện thi vào 10 hiệu quả. Giai toan 9 xem mục lục giai toan lop 9 sach giao khoa duoi day

    PHẦN ĐẠI SỐ - TOÁN 9 TẬP 1

    PHẦN HÌNH HỌC - TOÁN 9 TẬP 1

    PHẦN ĐẠI SỐ - TOÁN 9 TẬP 2

    PHẦN HÌNH HỌC - TOÁN 9 TẬP 2

    CHƯƠNG I. CĂN BẬC HAI. CĂN BẬC BA

    CHƯƠNG II. HÀM SỐ BẬC NHẤT

    CHƯƠNG I. HỆ THỨC LƯỢNG TRONG TAM GIÁC VUÔNG

    CHƯƠNG II. ĐƯỜNG TRÒN

    CHƯƠNG III. HỆ HAI PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN

    CHƯƠNG IV. HÀM SỐ y = ax^2 (a ≠ 0). PHƯƠNG TRÌNH BẬC HAI MỘT ẨN

    CHƯƠNG III. GÓC VỚI ĐƯỜNG TRÒN

    CHƯƠNG IV. HÌNH TRỤ - HÌNH NÓN - HÌNH CẦU

    BÀI TẬP ÔN CUỐI NĂM - TOÁN 9

    Xem Thêm

    Lớp 9 | Các môn học Lớp 9 | Giải bài tập, đề kiểm tra, đề thi Lớp 9 chọn lọc

    Danh sách các môn học Lớp 9 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2025 ngắn gọn, chi tiết dễ hiểu.

    Toán Học

    Vật Lý

    Hóa Học

    Ngữ Văn

    Sinh Học

    GDCD

    Tin Học

    Tiếng Anh

    Công Nghệ

    Lịch Sử & Địa Lý

    Âm Nhạc & Mỹ Thuật