Bài 7 trang 111 Tài liệu dạy – học Toán 9 tập 2

Giải bài tập Trên đường tròn (O; R) lần lượt lấy ba điểm A, B, C theo thứ tự sao cho

    Đề bài

    Trên đường tròn (O; R) lần lượt lấy ba điểm A, B, C theo thứ tự sao cho \(AB = R\sqrt 2 \) và sđ cung BC=300.

    a) Tính số đo của cung AB không chứa điểm C và tính độ dài dây AC theo R.

    b) Từ A vẽ đường thẳng vuông góc với đường thẳng BC tại D. Tính độ dài các cung AD, DB, AB của đường tròn (ABD) theo R.

    Phương pháp giải - Xem chi tiết

    a) Chứng minh tam giác OAB vuông tại O suy ra số đo cung AB.

    Gọi H là trung điểm của AC, chứng minh H là trung điểm của AC, tính AH, từ đó suy ra AC.

    b) Xác định tâm đường tròn ngoại tiếp tam giác ABD, tính số đo các góc \(\widehat {AO'D};\,\,\widehat {BO'D};\,\,\widehat {AO'B}\) với O’ là tâm đường tròn ngoại tiếp tam giác ABD.

    Sử dụng công thức tính độ dài cung n0 của đường tròn có bán kính R là \(l = \dfrac{{\pi Rn}}{{180}}\).

    Lời giải chi tiết

     

    a) Xét tam giác OAB có : \(O{A^2} + O{B^2} = {R^2} + {R^2} = 2{R^2} = A{B^2}\)

    \( \Rightarrow \Delta OAB\) vuông tại O (định lí Pytago đảo)

    \( \Rightarrow \widehat {AOB} = {90^0} = sdcung\,AB\) (số đo góc ở tâm bằng số đo cung bị chắn).

    Mà \(sdcung\,BC = {30^0} \Rightarrow \widehat {BOC} = {30^0}\)(số đo góc ở tâm bằng số đo cung bị chắn).

    \( \Rightarrow \widehat {AOC} = \widehat {AOB} + \widehat {BOC} = {90^0} + {30^0} = {120^0}\).

    Gọi H là trung điểm của AC ta có \(OH \bot AC\) (quan hệ vuông góc giữa đường kính và dây cung).

    Xét tam giác OAC có \(OA = OC = R \Rightarrow \Delta OAC\) cân tại O \( \Rightarrow OH\) là đường cao đồng thời là phân giác \( \Rightarrow \widehat {AOH} = \dfrac{1}{2}\widehat {AOC} = \dfrac{1}{2}{.120^0} = {60^0}\).

    Xét tam giác vuông OAH có : \(AH = OA.\sin {60^0} = R.\dfrac{{\sqrt 3 }}{2}\)

    \( \Rightarrow AC = 2AH = 2.R.\dfrac{{\sqrt 3 }}{2} = R\sqrt 3 \).

    b) Tam giác ABD vuông tại D nên nội tiếp đường tròn đường kính AB, bán kính \(r = \dfrac{{AB}}{2} = \dfrac{{R\sqrt 2 }}{2}\)

    Xét tam giác OBC có \(OB = OC = R \Rightarrow \Delta OBC\) cân tại O

    \( \Rightarrow \widehat {OBC} = \widehat {OCB} = \dfrac{{{{180}^0} - \widehat {BOC}}}{2} = \dfrac{{{{180}^0} - {{30}^0}}}{2} = {75^0}\)

    Ta có : \(\widehat {OBD} + \widehat {OBC} = {180^0}\) (hai góc kề bù) \( \Rightarrow \widehat {OBD} = {180^0} - \widehat {OBC} = {180^0} - {75^0} = {105^0}\)

    Tứ giác OADB có \(\widehat {AOB} + \widehat {ADB} = {90^0} + {90^0} = {180^0} \Rightarrow \) Tứ giác OADB là tứ giác nội tiếp

    \( \Rightarrow \widehat {OAD} + \widehat {OBD} = {180^0}\) (tổng 2 góc đối của tứ giác nội tiếp)

    \( \Rightarrow \widehat {OAD} = {180^0} - \widehat {OBD} = {180^0} - {105^0} = {75^0}\).

    Mà \(\widehat {OAB} + \widehat {BAD} = \widehat {AOD} \)

    \(\Rightarrow {45^0} + \widehat {BAD} = {75^0} \Rightarrow \widehat {BAD} = {30^0}\)

    (do \(\Delta OAB\) vuông cân tại O nên \(\widehat {OAB} = \widehat {OBA} = {45^0}\))

    Gọi O’ là trung điểm của AB.

    Tam giác O’AD có \(O'A = O'D \Rightarrow \Delta O'AD\) cân tại O’

    \( \Rightarrow \widehat {AO'D} = {180^0} - \widehat {O'AD} - \widehat {O'DA} \)\(\,= {180^0} - 2\widehat {O'AD} = {180^0} - {2.30^0} = {120^0}\)

    \( \Rightarrow {l_{AD}} = \dfrac{{\pi rn}}{{180}} = \dfrac{{\pi .\dfrac{{R\sqrt 2 }}{2}.120}}{{180}} = \dfrac{{\pi R\sqrt 2 }}{3}\)

    Ta có \(\widehat {BO'D} + \widehat {AO'D} = {180^0}\) (kề bù) \( \Rightarrow \widehat {BO'D} = {180^0} - \widehat {AO'D} = {180^0} - {120^0} = {60^0}\)

    \( \Rightarrow {l_{DB}} = \dfrac{{\pi rn}}{{180}} = \dfrac{{\pi .\dfrac{{R\sqrt 2 }}{2}.60}}{{180}} = \dfrac{{\pi R\sqrt 2 }}{6}\)

    \({l_{AB}} = \dfrac{{\pi rn}}{{180}} = \dfrac{{\pi \dfrac{{R\sqrt 2 }}{2}180}}{{180}} = \dfrac{{\pi R\sqrt 2 }}{2}\)

    Xemloigiai.com

    Tài liệu Dạy - học Toán 9

    Giải bài tập Tài liệu Dạy - học Toán lớp 9, đầy đủ công thức, lý thuyết, định lí, chuyên đề toán. Phát triển tư duy đột phá trong dạy học Toán 9, để học tốt dạy học Toán 9

    CHƯƠNG I : CĂN BẬC HAI - CĂN BẬC BA

    CHƯƠNG II : HÀM SỐ BẬC NHẤT

    CHƯƠNG III: HỆ PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN

    CHƯƠNG IV: HÀM SỐ BẬC HAI VÀ PHƯƠNG TRÌNH BẬC HAI

    CHƯƠNG I: HỆ THỨC LƯỢNG TRONG TAM GIÁC VUÔNG

    CHƯƠNG II : ĐƯỜNG TRÒN

    CHƯƠNG III: GÓC VỚI ĐƯỜNG TRÒN

    Chủ đề 1: Các phép tính với căn bậc hai

    Chủ đề 2: Biến đổi căn thức

    Chủ đề 3: Căn bậc ba

    Chủ đề 4 : Hàm số bậc nhất

    Chủ đề 5: Đồ thị hàm số bậc nhất

    Chủ đề 1: Hai phương trình bậc nhất hai ẩn

    Chủ đề 2 : Giải hệ phương trình bậc nhất hai ẩn

    Chủ đề 3: Giải bài toán bằng cách lập hệ phương trình

    Chủ đề 4: Hàm số bậc hai

    Chủ đề 5: Phương trình bậc hai

    Chủ đề 6: Hệ thức Vi - ét

    Chủ đề 7: Bài toán bậc hai

    Chủ đề 1 : Một số hệ thức về cạnh và đường cao trong tam giác vuông

    Chủ đề 2 : Tỉ số lượng giác của góc nhọn

    Chủ đề 3: Hệ thức về cạnh và góc trong tam giác vuông

    Chủ đề 4 : Ứng dụng của tỉ số lượng giác

    Chủ đề 5 : Sự xác định đường tròn. Tính chất đối xứng của đường tròn.

    Chủ đề 6 : Đường kính và dây của đường tròn

    Chủ đề 7 : Đường thẳng và đường tròn.

    Chủ đề 1: Đo góc và cung

    Chủ đề 2 : Góc chắn cung

    Chủ đề 3: Tứ giác nội tiếp

    Chủ đề 4 : Chu vi và diện tích hình tròn

    Lớp 9 | Các môn học Lớp 9 | Giải bài tập, đề kiểm tra, đề thi Lớp 9 chọn lọc

    Danh sách các môn học Lớp 9 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2025 ngắn gọn, chi tiết dễ hiểu.

    Toán Học

    Vật Lý

    Hóa Học

    Ngữ Văn

    Sinh Học

    GDCD

    Tin Học

    Tiếng Anh

    Công Nghệ

    Lịch Sử & Địa Lý

    Âm Nhạc & Mỹ Thuật