Bài 49 Trang 176 SGK Đại số và Giải tích 12 Nâng cao

Một chất điểm A xuất phát từ vị trí O, chuyển động thẳng nhanh dần đều; 8 giây sau nó đạt đến vận tốc 6 m/s. từ thời điểm đó nó chuyển động thẳng đều. Một chất điểm B xuất phát từ cùng vị trí O nhưng chậm hơn 12 giây so với A và chuyển động thẳng nhanh dần đều. biết rằng B đuổi kịp A sau 8 giây ( kể từ lúc B xuất phát). Tìm vận tốc của B tại thời điểm đuổi kịp A.

    Đề bài

    Một chất điểm A xuất phát từ vị trí O, chuyển động thẳng nhanh dần đều; 8 giây sau nó đạt đến vận tốc 6 m/s. Từ thời điểm đó nó chuyển động thẳng đều. Một chất điểm B xuất phát từ cùng vị trí O nhưng chậm hơn 12 giây so với A và chuyển động thẳng nhanh dần đều. Biết rằng B đuổi kịp A sau 8 giây (kể từ lúc B xuất phát). Tìm vận tốc của B tại thời điểm đuổi kịp A.

    Lời giải chi tiết

    Từ công thức v1=v0+at ta có:

    Gia tốc trong 8 giây đầu của chất điểm A là:

    \(a = \dfrac{{{v_1} - {v_0}}}{t}\) \( = \dfrac{{6 - 0}}{8} = \dfrac{3}{4}\left( {m/{s^2}} \right)\)

    ⇒ Phương trình vận tốc của chuyển động có dạng:

    \(V\left( t \right) = \int {\dfrac{3}{4}dt}  = \dfrac{3}{4}t + C\left( {m/{s^2}} \right)\)

    Tại t = 0 thì v(0)= 0 nên C= 0.

    Do đó,phương trình chuyển động của vật là: \(v\left( t \right) = \dfrac{3}{4}t\)

    Trong 8 giây đầu này, chất điểm A chuyển động nhanh dần với vận tốc \(v\left( t \right) = \dfrac{3}{4}t\).

    Vậy nó đi được quãng đường là \(\int\limits_0^8 {\dfrac{3}{4}tdt}  = \left. {\dfrac{3}{4}.\dfrac{{{t^2}}}{2}} \right|_0^8 = 24\)

    Sau 12 giây tiếp theo (khi mà bị B đuổi kịp A), A đi được thêm 6.12 = 72 mét.

    Như vậy, khi bị B đuổi kịp, A và B đi được quãng đường là 24 + 72 = 96 mét

    Từ công thức \(S = {S_0} + \dfrac{1}{2}a{t^2}\)

    Suy ra gia tốc của chất điểm B là: \(a = \dfrac{{2\left( {S - {S_0}} \right)}}{{{t^2}}}\) \( = \dfrac{{2\left( {96 - 0} \right)}}{{{8^2}}} = 3\)

    Vậy khi đuổi kịp A, vận tốc của B là:

    v1=v0+at=0+3.8=24 (m/s)

    Cách khác:

    Thời điểm A và B gặp nhau là 20 giây kể từ lúc A xuất phát.

    Đồ thị của vận tốc của A là đường gấp khúc OMN.

    Quãng đường mà A đi được (s = vt ) là diện tích hình thang OMNQ.

    \({S_{OMNQ}} = {1 \over 2}\left( {20 + 12} \right).6 = 96\)

    Vậy lúc gặp B, A đi được \(96 m\).

    Đồ thị vận tốc của B là đường thẳng HP.

    Vì B xuất phát cùng vị trí với A nên B cũng đi được \(96 m\) . Quãng đường B đi được bằng diện tích tam giác \(HPQ\).

    Ta có \({S_{HPQ}} = {1 \over 2}.PQ.HQ \) \(\Rightarrow 96 = {1 \over 2}.PQ.8 \Rightarrow PQ = 24.\)

    Vậy vận tốc của B tại thời điểm gặp A là \(24\, m/s\).

    Xemloigiai.com

    SGK Toán 12 Nâng cao

    Giải bài tập toán lớp 12 Nâng cao như là cuốn để học tốt Toán lớp 12 Nâng cao. Tổng hợp công thức, lý thuyết, phương pháp giải bài tập giải tích và hình học SGK Toán lớp 12 Nâng cao, giúp ôn luyện thi THPT Quốc gia

    GIẢI TÍCH 12 NÂNG CAO

    HÌNH HỌC 12 NÂNG CAO

    CHƯƠNG I. ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ

    CHƯƠNG II. HÀM SỐ LŨY THỪA, HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT

    CHƯƠNG III. NGUYÊN HÀM, TÍCH PHÂN VÀ ỨNG DỤNG

    CHƯƠNG IV. SỐ PHỨC

    ÔN TẬP CUỐI NĂM ĐẠI SỐ VÀ GIẢI TÍCH - TOÁN 12 NÂNG CAO

    CHƯƠNG I. KHỐI ĐA DIỆN VÀ THỂ TÍCH CỦA CHÚNG

    CHƯƠNG II. MẶT CẦU, MẶT TRỤ, MẶT NÓN

    CHƯƠNG III. PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN

    ÔN TẬP CUỐI NĂM HÌNH HỌC - TOÁN 12 NÂNG CAO