Bài 48 Trang 176 SGK Đại số và Giải tích 12 Nâng cao

Giả sử một vật từ trạng thái nghỉ khi chuyển động thẳng với vận tốc . Tìm quãng đường vật đi được cho tới khi nó dừng lại.

    Đề bài

    Giả sử một vật từ trạng thái nghỉ khi \(t=0\) (s) chuyển động thẳng với vận tốc \(v\left( t \right) = t\left( {5 - t} \right)\,\,\,\left( {m/s} \right)\). Tìm quãng đường vật đi được cho tới khi nó dừng lại.

    Phương pháp giải - Xem chi tiết

    Sử dụng công thức tính độ dài quãng đường vật đi được từ thời điểm \(t_1\) đến \(t_2\) là: \(S = \int\limits_{{t_1}}^{{t_2}} {v\left( t \right)dt} \)

    Lời giải chi tiết

    Ta có: Khi vật dừng thì \(v(t)=0\).

    \(v\left( t \right) = 0 \Leftrightarrow \left[ \matrix{
    t = 0 \hfill \cr 
    t = 5 \hfill \cr} \right.\)

    Vật dừng lại tại thời điểm \(t=5\). Quãng đường vật đi được là

    \(S = \int\limits_0^5 {t\left( {5 - t} \right)} dt \)\( = \int\limits_0^5 {\left( {5t - {t^2}} \right)dt}  \) \(= \left. {\left( {\dfrac{{5{t^2}}}{2} - \dfrac{{{t^3}}}{3}} \right)} \right|_0^5 \) \(= \dfrac{{125}}{2} - \dfrac{{125}}{3} \) \(= \dfrac{{125}}{6}(m)\)

    Xemloigiai.com

    SGK Toán 12 Nâng cao

    Giải bài tập toán lớp 12 Nâng cao như là cuốn để học tốt Toán lớp 12 Nâng cao. Tổng hợp công thức, lý thuyết, phương pháp giải bài tập giải tích và hình học SGK Toán lớp 12 Nâng cao, giúp ôn luyện thi THPT Quốc gia

    GIẢI TÍCH 12 NÂNG CAO

    HÌNH HỌC 12 NÂNG CAO

    CHƯƠNG I. ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ

    CHƯƠNG II. HÀM SỐ LŨY THỪA, HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT

    CHƯƠNG III. NGUYÊN HÀM, TÍCH PHÂN VÀ ỨNG DỤNG

    CHƯƠNG IV. SỐ PHỨC

    ÔN TẬP CUỐI NĂM ĐẠI SỐ VÀ GIẢI TÍCH - TOÁN 12 NÂNG CAO

    CHƯƠNG I. KHỐI ĐA DIỆN VÀ THỂ TÍCH CỦA CHÚNG

    CHƯƠNG II. MẶT CẦU, MẶT TRỤ, MẶT NÓN

    CHƯƠNG III. PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN

    ÔN TẬP CUỐI NĂM HÌNH HỌC - TOÁN 12 NÂNG CAO