Bài 3.33 trang 130 SBT hình học 12

Giải bài 3.33 trang 130 sách bài tập hình học 12. Xét vị trí tương đối của các cặp đường thẳng d và d’ cho bởi các phương trình sau:...

    Đề bài

    Xét vị trí tương đối của các cặp đường thẳng d và d’ cho bởi các phương trình sau:

    a) \(d:\dfrac{{x + 1}}{1} = \dfrac{{y - 1}}{2} = \dfrac{{z + 3}}{3}\)  và \(d':\dfrac{{x - 1}}{3} = \dfrac{{y - 5}}{2} = \dfrac{{z - 4}}{2}\)

    b) \(d:\left\{ {\begin{array}{*{20}{c}}{x = t}\\{y = 1 + t}\\{z = 2 - t}\end{array}} \right.\)  và  \(d':\left\{ {\begin{array}{*{20}{c}}{x = 9 + 2t'}\\{y = 8 + 2t'}\\{z = 10 - 2t'}\end{array}} \right.\)

    c)  \(d:\left\{ {\begin{array}{*{20}{c}}{x =  - t}\\{y = 3t}\\{z =  - 1 - 2t}\end{array}} \right.\)  và \(d':\left\{ {\begin{array}{*{20}{c}}{x = 0}\\{y = 9}\\{z = 5t'}\end{array}} \right.\)

    Phương pháp giải - Xem chi tiết

    Sử dụng lý thuyết về vị trí tương đối của hai đường thẳng.

    Xem chi tiết tại đây.

    Lời giải chi tiết

    a) Ta có: \(\overrightarrow {{u_d}}  = (1;2;3)\) và \(\overrightarrow {{u_{d'}}}  = (3;2;2)\)

    Suy ra  \(\overrightarrow n  = \left[ {\overrightarrow {{u_d}} ,\overrightarrow {{u_{d'}}} } \right] = ( - 2;7; - 4)\)

    Ta có \({M_0}( - 1;1; - 2) \in d,{M_0}'(1;5;4) \in {\rm{d'}}\)\( \Rightarrow \overrightarrow {{M_0}{M_0}'}  = (2;4;6)\)

    Ta có \(\overrightarrow n .\overrightarrow {{M_0}{M_0}'}  =  - 4 + 28 - 24 = 0\).

    Vậy đường thẳng \(d\) và \(d’\) đồng phẳng và khác phương, nên \(d\) và \(d’\) cắt nhau.

    b) Ta có \(\overrightarrow {{u_d}}  = (1;1; - 1)\) và \(\overrightarrow {{u_{d'}}}  = (2;2; - 2).{M_0}(0;1;2) \in d\)

    Vì \(\left\{ {\begin{array}{*{20}{c}}{\overrightarrow {{u_{d'}}}  = 2\overrightarrow {{u_d}} }\\{{M_0} \notin d'}\end{array}} \right.\) (tọa độ M0 không thỏa mãn d’) nên hai đường thẳng d và d’ song song.

    c) d có vecto chỉ phương \(\overrightarrow {{u_d}}  = ( - 1;3; - 2)\)

    d’ có vecto chỉ phương \(\overrightarrow {{u_{d'}}}  = (0;0;5)\)

    Gọi \(\overrightarrow n  = \left[ {\overrightarrow {{u_d}} ,\overrightarrow {{u_{d'}}} } \right] = (15;5;0) \ne \overrightarrow 0 \)

    Ta có \({M_0}(0;0; - 1) \in d\)

    \(M{'_0}(0;9;0) \in d'\)\( \Rightarrow \overrightarrow {{M_0}M{'_0}}  = (0;9;1),\) \(\overrightarrow n .\overrightarrow {{M_0}M{'_0}}  = 45 \ne 0\)

    Vậy \(d\) và \(d’\) là hai đường thẳng chéo nhau.

    Xemloigiai.com

    SBT Toán lớp 12

    Giải sách bài tập toán hình học và giải tích lớp 12. Giải chi tiết tất cả câu hỏi trong các chương và bài chi tiết trong SBT hình học và giải tích toán 12 cơ bản với cách giải nhanh và ngắn gọn nhất

    GIẢI TÍCH SBT 12

    HÌNH HỌC SBT 12

    Chương 1: Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số

    Chương 2: Hàm số lũy thừa. Hàm số mũ và hàm số Logarit

    Chương 3: Nguyên hàm, tích phân và ứng dụng

    Chương 4: Số phức

    Chương 1: Khối đa diện

    Chương 2: Mặt nón, mặt trụ, mặt cầu

    Chương 3: Phương pháp tọa độ trong không gian

    Ôn tập cuối năm Hình học 12