Bài 3.38 trang 131 SBT hình học 12

Giải bài 3.38 trang 131 sách bài tập hình học 12. Tính khoảng cách giữa các cặp đường thẳng d và d' trong các trường hợp sau:...

    Đề bài

    Tính khoảng cách giữa các cặp đường thẳng \(\Delta \) và \(\Delta '\) trong các trường hợp sau:

    a) \(\Delta :\left\{ {\begin{array}{*{20}{c}}{x = 1 + t}\\{y =  - 1 - t}\\{z = 1}\end{array}} \right.\) và \(\Delta ':\left\{ {\begin{array}{*{20}{c}}{x = 2 - 3t'}\\{y = 2 + 3t'}\\{z = 3t'}\end{array}} \right.\)

    b) \(\Delta :\left\{ {\begin{array}{*{20}{c}}{x = t}\\{y = 4 - t}\\{z =  - 1 + 2t}\end{array}} \right.\) và \(\Delta ':\left\{ {\begin{array}{*{20}{c}}{x = t'}\\{y = 2 - 3t'}\\{z =  - 3t'}\end{array}} \right.\)

    Phương pháp giải - Xem chi tiết

    - Viết phương trình mặt phẳng chứa một đường thẳng và song song với đường thẳng còn lại.

    - Tính khoảng cách giữa hai đường thẳng chéo nhau, sử dụng công thức:

    \(d\left( {\Delta ,\Delta '} \right) = d\left( {\Delta ,\left( \alpha  \right)} \right)\) \( = \dfrac{{\left| {a{x_0} + b{y_0} + c{z_0} + d} \right|}}{{\sqrt {{a^2} + {b^2} + {c^2}} }}\)

    ở đó \(\Delta ' \subset \left( \alpha  \right),\Delta //\left( \alpha  \right)\) và \(M \in \Delta \).

    Lời giải chi tiết

    a) Gọi \((\alpha )\) là mặt phẳng chứa \(\Delta \) và song song với \(\Delta '\).

    Hai vecto có giá song song hoặc nằm trên \((\alpha )\) là:  \(\overrightarrow u  = (1; - 1;0)\)  và \(\overrightarrow u ' = ( - 1;1;1)\).

    Suy ra  \(\overrightarrow {{n_\alpha }}  = \left[ {\overrightarrow {u'} ,\overrightarrow u } \right] = \left( { - 1; - 1;0} \right)\)

    \((\alpha )\) đi qua điểm M1(1; -1; 1) thuộc \(\Delta \) và có vecto pháp tuyến:  \(\overrightarrow {{n_{\alpha '}}}  = (1;1;0)\)

    Vậy phưong trình của mặt phẳng \((\alpha )\) có dạng \(x – 1 + y + 1=0 \) hay \(x + y = 0\)

    Ta có: M2((2; 2; 0) thuộc đường thẳng \(\Delta '\)

    \(d(\Delta ,\Delta ') = d({M_2},(\alpha ))\)\( = \dfrac{{|2 + 2|}}{{\sqrt {1 + 1} }} = 2\sqrt 2 \)

    b) Hai đường thẳng \(\Delta \) và \(\Delta '\) có phương trình là:

    \(\Delta :\left\{ {\begin{array}{*{20}{c}}{x = t}\\{y = 4 - t}\\{z =  - 1 + 2t}\end{array}} \right.\) và \(\Delta ':\left\{ {\begin{array}{*{20}{c}}{x = t'}\\{y = 2 - 3t'}\\{z =  - 3t'}\end{array}} \right.\)

    Phương trình mặt phẳng \((\alpha )\) chứa \(\Delta \) và song song với \(\Delta '\) là 9x + 5y – 2z – 22 = 0

    Lấy điểm M’(0; 2; 0) trên \(\Delta '\).

    Ta có \(d(\Delta ,\Delta ') = d(M',(\alpha ))\)\( = \dfrac{{|5.(2) - 22|}}{{\sqrt {81 + 25 + 4} }} = \dfrac{{12}}{{\sqrt {110} }}\).

    Vậy khoảng cách giữa hai đường thẳng \(\Delta \) và \(\Delta '\) là \(\dfrac{{12}}{{\sqrt {110} }}\).

    Xemloigiai.com

    SBT Toán lớp 12

    Giải sách bài tập toán hình học và giải tích lớp 12. Giải chi tiết tất cả câu hỏi trong các chương và bài chi tiết trong SBT hình học và giải tích toán 12 cơ bản với cách giải nhanh và ngắn gọn nhất

    GIẢI TÍCH SBT 12

    HÌNH HỌC SBT 12

    Chương 1: Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số

    Chương 2: Hàm số lũy thừa. Hàm số mũ và hàm số Logarit

    Chương 3: Nguyên hàm, tích phân và ứng dụng

    Chương 4: Số phức

    Chương 1: Khối đa diện

    Chương 2: Mặt nón, mặt trụ, mặt cầu

    Chương 3: Phương pháp tọa độ trong không gian

    Ôn tập cuối năm Hình học 12