Bài 3.37 trang 131 SBT hình học 12

Giải bài 3.37 trang 131 sách bài tập hình học 12. Cho đường thẳng và mặt phẳng: 2x – 2y + z + 3 = 0...

    Đề bài

    Cho đường thẳng   \(\Delta :\dfrac{{x + 3}}{2} = \dfrac{{y + 1}}{3} = \dfrac{{z + 1}}{2}\) và mặt phẳng \((\alpha )\): 2x – 2y + z + 3 = 0

    a) Chứng minh rằng  \(\Delta \) song song với \((\alpha )\).

    b) Tính khoảng cách giữa \(\Delta \) và \((\alpha )\)

    Phương pháp giải - Xem chi tiết

    - Sử dụng điều kiện đường thẳng \(\Delta \) song song với mặt phẳng \(\left( \alpha  \right)\): \(\left\{ \begin{array}{l}\overrightarrow {{u_\Delta }} .\overrightarrow {{n_{\left( \alpha  \right)}}}  = 0\\M \in \Delta ,M \notin \left( \alpha  \right)\end{array} \right.\).

    - Sử dụng công thức tính khoảng cách \(d\left( {\Delta ,\left( \alpha  \right)} \right) = d\left( {M,\left( \alpha  \right)} \right) = \dfrac{{\left| {\left[ {\overrightarrow {MA} ,\overrightarrow u } \right]} \right|}}{{\left| {\overrightarrow u } \right|}}\)

    Lời giải chi tiết

    a) Ta có: \(\overrightarrow {{u_\Delta }}  = (2;3;2)\)  và \(\overrightarrow {{n_\alpha }}  = (2; - 2;1)\)

    \(\overrightarrow {{u_\Delta }} .\overrightarrow {{n_\alpha }}  = 4 - 6 + 2 = 0\)         (1)

    Xét  điểm  M0(-3; -1; -1)  thuộc \(\Delta \), ta thấy tọa độ M0 không thỏa mãn phương trình của \((\alpha )\). Vậy  \({M_0} \notin (\alpha )\)        (2).

    Từ (1) và (2) ta suy ra \(\Delta //(\alpha )\)  \(\)

    b)  \(d(\Delta ,(\alpha )) = d({M_0},(\alpha ))\)\( = \dfrac{{|2.( - 3) - 2.( - 1) + ( - 1) + 3|}}{{\sqrt {4 + 4 + 1} }} = \dfrac{2}{3}\)

    Vậy khoảng cách giữa đường thẳng \(\Delta \) và mặt phẳng \((\alpha )\) là \(\dfrac{2}{3}\).

    Xemloigiai.com

    SBT Toán lớp 12

    Giải sách bài tập toán hình học và giải tích lớp 12. Giải chi tiết tất cả câu hỏi trong các chương và bài chi tiết trong SBT hình học và giải tích toán 12 cơ bản với cách giải nhanh và ngắn gọn nhất

    GIẢI TÍCH SBT 12

    HÌNH HỌC SBT 12

    Chương 1: Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số

    Chương 2: Hàm số lũy thừa. Hàm số mũ và hàm số Logarit

    Chương 3: Nguyên hàm, tích phân và ứng dụng

    Chương 4: Số phức

    Chương 1: Khối đa diện

    Chương 2: Mặt nón, mặt trụ, mặt cầu

    Chương 3: Phương pháp tọa độ trong không gian

    Ôn tập cuối năm Hình học 12