Bài 27 trang 59 Sách bài tập Hình học lớp 12 Nâng cao

Cho hình trụ có trục

    Cho hình trụ có trục \({O_1}{O_2}\). Một mặt phẳng \(\left( \alpha  \right)\) song song với trục \({O_1}{O_2}\), cắt hình trụ theo thiết diện là hình chữ nhật ABCD. Gọi O là tâm của thiết diện đó. Tính \(\widehat {{O_1}{\rm{O}}{{\rm{O}}_2}}\)  biết rằng bán kính đường tròn ngoại tiếp hình chữ nhật ABCD bằng bán kính đường tròn đáy hình trụ.

    Giải

    ABCD là hình chữ nhật nên O là trung điểm của AC.

    Gọi M là trung điểm của AB thì \({O_1}M \bot AB,OM \bot AB\) và theo giải thiết, AO=AO1.

    Hai tam giác vuông MAOMAO1MA chung, \(OA = {O_1}A\) nên \(OM = {O_1}M.\)

    Từ đó \(\widehat {{\rm{O}}{{\rm{O}}_1}M}\)= 450, do đó \(\widehat {{\rm{O}}{{\rm{O}}_1}O_2}\) = 450.

    Dễ thấy \(\Delta {O_1}O{O_2}\) cân tại O, vậy \(\widehat {{O_1}{\rm{O}}{{\rm{O}}_2}}\)  =  900.

    Xemloigiai.com

    SBT Toán 12 Nâng cao

    Lời giải chi tiết, đáp án bài tập SBT Giải tích, Hình học 12 Nâng cao. Tất cả lý thuyết, bài tập vận dụng, thực hành Toán 12 Nâng cao

    PHẦN SBT GIẢI TÍCH 12 NÂNG CAO

    PHẦN SBT HÌNH HỌC 12 NÂNG CAO

    CHƯƠNG I: ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ

    CHƯƠNG II: HÀM SỐ LŨY THỪA, HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT

    CHƯƠNG III: NGUYÊN HÀM, PHÂN TÍCH VÀ ỨNG DỤNG

    CHƯƠNG IV: SỐ PHỨC

    CHƯƠNG I: KHỐI ĐA DIỆN VÀ THỂ TÍCH CỦA CHÚNG

    CHƯƠNG II: MẶT CẦU, MẶT TRỤ, MẶT NÓN

    CHƯƠNG III: PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN