Bài 24 trang 58 Sách bài tập Hình học lớp 12 Nâng cao

Cho hình trụ có bán kính bằng R,

    Cho hình trụ có bán kính bằng R, trục OO’ bằng h. Một mặt phẳng (P) thay đổi đi qua O, tạo với đáy hình trụ góc \(\alpha \) cho trước và cắt hai đáy của hình trụ đã cho theo các dây ABCD ( dây AB đi qua O).

    1) Tính diện tích tứ giác ABCD.

    2) Chứng minh rằng hình chiếu vuông góc H của điểm O’ trên (P) thuộc một đường tròn cố định.

    Giải

    1) Gọi I là trung điểm của CD thì \(O'I \bot CD\), từ đó \(OI \bot CD\). Vậy \(\alpha  = \widehat {{\rm{OIO'}}}\).

    Dễ thấy \(AB//CD\), tức là ABCD là hình thang. Mặt khác \(OI \bot CD\) nên \(OI \bot AB.\) Vậy ABCD là hình thang cân.

    Diện tích S của ABCD được tính bởi

    \(S = {1 \over 2}(AB + CD).OI\)

    Ta có : \(AB = 2R,OI = {{OO'} \over {\sin \alpha }} = {h \over {\sin \alpha }}.\)

    \(\eqalign{  & O'I = OO'\cot \alpha  \cr&\Rightarrow ID = \sqrt {O'{D^2} - O'{I^2}}  = \sqrt {{R^2} - {h^2}{{\cot }^2}\alpha }   \cr  &  \Rightarrow CD = 2\sqrt {{R^2} - {h^2}{{\cot }^2}\alpha }  \cr} \).

    Vậy \(S = {1 \over 2}(2R + 2\sqrt {{R^2} - {h^2}{{\cot }^2}\alpha } ).{h \over {\sin \alpha }}\)

                \(= (R + \sqrt {{R^2} - {h^2}{{\cot }^2}\alpha } ).{h \over {\sin \alpha }}.\)

    2) Trong mặt phẳng (OO’I), kẻ \(O'H \bot OI\) thì H là hình chiếu của O’ trên mp(P).

    Xét tam giác vuông O’IH, ta có \(O'H = O'I\sin \alpha  = h.\cot \alpha .\sin \alpha  = h.c{\rm{os}}\alpha {\rm{.}}\)

    Kẻ đường cao HJ của tam giác vuông O’HO thì \(O'J.OO' = O'{H^2},\) 

    \( \Rightarrow O'J = {{O'{H^2}} \over {OO'}} = h.{\cos ^2}\alpha ,\) từ đó suy ra J là điểm cố định.

    Mặt khác \(H{J^2} = O'{H^2} - O'{J^2} \)

                              \(= {h^2}.{\cos ^2}\alpha  - {h^2}.{\cos ^4}\alpha \)

                              \(= {h^2}{\cos ^2}\alpha .{\sin ^2}\alpha .\)

    Vậy HJ có độ dài không đổi, từ đó ta có điểm H thuộc đường tròn tâm J, bán kính cho trước, trong mặt phẳng vuông góc với OO’ tại J.

    Chú ý. Cũng có thể thấy H thuộc mặt trụ T có trục là OO’, bán kính đáy R’ cho trước, cụ thể \(R' = h.\cos \alpha .\sin \alpha \), đồng thời H thuộc mặt phẳng vuông góc với trục OO’ tại điểm J. Từ đó H thuộc đường tròn là giao của mặt trụ T và mặt phẳng nói trên.

    Xemloigiai.com

    SBT Toán 12 Nâng cao

    Lời giải chi tiết, đáp án bài tập SBT Giải tích, Hình học 12 Nâng cao. Tất cả lý thuyết, bài tập vận dụng, thực hành Toán 12 Nâng cao

    PHẦN SBT GIẢI TÍCH 12 NÂNG CAO

    PHẦN SBT HÌNH HỌC 12 NÂNG CAO

    CHƯƠNG I: ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ

    CHƯƠNG II: HÀM SỐ LŨY THỪA, HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT

    CHƯƠNG III: NGUYÊN HÀM, PHÂN TÍCH VÀ ỨNG DỤNG

    CHƯƠNG IV: SỐ PHỨC

    CHƯƠNG I: KHỐI ĐA DIỆN VÀ THỂ TÍCH CỦA CHÚNG

    CHƯƠNG II: MẶT CẦU, MẶT TRỤ, MẶT NÓN

    CHƯƠNG III: PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN