Bài 1.63 trang 37 SBT giải tích 12
Cho hàm số: \(y = {x^3} - (m + 4){x^2} - 4x + m\) (1)
LG a
Tìm các điểm mà đồ thị của hàm số (1) đi qua với mọi giá trị của \(m\).
Phương pháp giải:
- Biến đổi hàm số về phương trình ẩn \(m\) với tham số là \(x,y\).
- Cho các hệ số của \(m\) và hệ số tự do bằng \(0\) rồi tìm \(x,y\) và kết luận.
Lời giải chi tiết:
Ta có: \(y = {x^3} - (m + 4){x^2} - 4x + m\)
\(\begin{array}{l}
\Leftrightarrow y = {x^3} - m{x^2} - 4{x^2} - 4x + m\\
\Leftrightarrow y - {x^3} + m{x^2} + 4{x^2} + 4x - m = 0\\
\Leftrightarrow \left( {m{x^2} - m} \right) + y - {x^3} + 4{x^2} + 4x = 0
\end{array}\)
\( \Leftrightarrow \left( {{x^2} - 1} \right)m + y - {x^3} + 4{x^2} + 4x = 0\)
Đồ thị của hàm số (1) luôn luôn đi qua điểm \(A\left( {x;y} \right)\) với mọi \(m\) khi \(\left( {x;y} \right)\) là nghiệm của hệ phương trình: \(\left\{ \begin{array}{l}{x^2} - 1 = 0\\y - {x^3} + 4{x^2} + 4x = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = \pm 1\\y = {x^3} - 4{x^2} - 4x\end{array} \right.\) \( \Leftrightarrow \left[ \begin{array}{l}x = 1,y = - 7\\x = - 1;y = - 1\end{array} \right.\)
Vậy đồ thị của hàm số luôn luôn đi qua hai điểm \(\left( {1; - 7} \right)\) và \(\left( { - 1; - 1} \right).\)
LG b
Chứng minh rằng với mọi giá trị của \(m\), đồ thị của hàm số (1) luôn luôn có cực trị.
Phương pháp giải:
Hàm số đa thức bậc ba luôn có cực trị nếu \(y' = 0\) luôn có hai nghiệm phân biệt với \(\forall m\).
Lời giải chi tiết:
Ta có: \(y' = 3{x^2} - 2(m + 4)x - 4\); \(\Delta ' = {(m + 4)^2} + 12 > 0,\forall m\)
Do dó phương trình \(y' = 0\) luôn luôn có hai nghiệm phân biệt (và đổi dấu khi qua hai nghiệm đó).
Từ đó suy ra đồ thị của (1) luôn luôn có cực trị.
LG c
Khảo sát sự biến thiên và vẽ đồ thị (C) của (1) khi \(m = 0\)
Phương pháp giải:
Khảo sát tóm tắt:
+ Thay \(m = 0\) vào hàm số đã cho.
+ Tính \(y'\).
+ Lập bảng biến thiên và vẽ đồ thị hàm số.
Lời giải chi tiết:
Với \(m = 0\) ta được hàm số \(y = {x^3} - 4{x^2} - 4x\).
TXĐ: \(D = \mathbb{R}\)
Chiều biến thiên:
\(\mathop {\lim }\limits_{x \to + \infty } y = + \infty ,\mathop {\lim }\limits_{x \to - \infty } y = - \infty \)
Có \(y' = 3{x^2} - 8x - 4\), \(y' = 0 \Leftrightarrow x = \dfrac{{4 \pm 2\sqrt 7 }}{3}\)
Hàm số đồng biến trên các khoảng \(\left( { - \infty ;\frac{{4 - 2\sqrt 7 }}{3}} \right)\) và \(\left( {\frac{{4 + 2\sqrt 7 }}{3}; + \infty } \right)\)
Hàm số nghịch biến trên khoảng \(\left( {\frac{{4 - 2\sqrt 7 }}{3};\frac{{4 + 2\sqrt 7 }}{3}} \right)\)
Hàm số đạt cực đại tại \(x = \frac{{4 - 2\sqrt 7 }}{3}\), đạt cực tiểu tại \(x = \frac{{4 + 2\sqrt 7 }}{3}\)
Bảng biến thiên:
Đồ thị:
LG d
Xác định \(k\) để (C) cắt đường thẳng \(y = kx\) tại ba điểm phân biệt.
Phương pháp giải:
- Giải phương trình hoành độ giao điểm tìm nghiệm đặc biệt.
- Từ đó suy ra điều kiện của \(k\).
Lời giải chi tiết:
Với \(m = 0\) ta có:\(y = {x^3}-4{x^2}-4x\).
Xét phương trình hoành độ giao điểm: \({x^3}-4{x^2}-4x = kx\) (2)
Đường thẳng \(y = kx\) cắt (C) tại ba điểm phân biệt nếu phương trình (2) có ba nghiệm phân biệt.
Có
\(\begin{array}{l}
\left( 2 \right) \Leftrightarrow {x^3} - 4{x^2} - 4x - kx = 0\\
\Leftrightarrow {x^3} - 4{x^2} - \left( {k + 4} \right)x = 0
\end{array}\) \( \Leftrightarrow x\left[ {{x^2} - 4x - \left( {k + 4} \right)} \right] = 0\) \( \Leftrightarrow \left[ \begin{array}{l}x = 0\\{x^2} - 4x - \left( {k + 4} \right) = 0\,\,\left( 3 \right)\end{array} \right.\)
\(\left( 2 \right)\) có ba nghiệm phân biệt \( \Leftrightarrow \left( 3 \right)\) có hai nghiệm phân biệt khác \(0\)
\( \Leftrightarrow \left\{ \begin{array}{l}
\Delta ' = 4 + k + 4 > 0\\
{0^2} - 4.0 - \left( {k + 4} \right) \ne 0
\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l} k + 8 > 0\\-k -4\ne 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}k > - 8\\k \ne - 4\end{array} \right.\).
Vậy với \(k > - 8\) và \(k \ne - 4\) thì \(\left( C \right)\) cắt đường thẳng \(y = kx\) tại ba điểm phân biệt.
Xemloigiai.com
- Bài 1.56 trang 36 SBT giải tích 12
- Bài 1.57 trang 36 SBT giải tích 12
- Bài 1.58 trang 36 SBT giải tích 12
- Bài 1.59 trang 36 SBT giải tích 12
- Bài 1.60 trang 36 SBT giải tích 12
- Bài 1.61 trang 36 SBT giải tích 12
- Bài 1.62 trang 37 SBT giải tích 12
- Bài 1.64 trang 37 SBT giải tích 12
- Bài 1.65 trang 37 SBT giải tích 12
- Bài 1.66 trang 38 SBT giải tích 12
- Bài 1.67 trang 38 SBT giải tích 12
- Bài 1.68 trang 38 SBT giải tích 12
- Bài 1.69 trang 38 SBT giải tích 12
- Bài 1.70 trang 38 SBT giải tích 12
- Bài 1.71 trang 39 SBT giải tích 12
- Bài 1.72 trang 39 SBT giải tích 12
- Bài 1.73 trang 39 SBT giải tích 12
- Bài 1.74 trang 39 SBT giải tích 12
SBT Toán lớp 12
Giải sách bài tập toán hình học và giải tích lớp 12. Giải chi tiết tất cả câu hỏi trong các chương và bài chi tiết trong SBT hình học và giải tích toán 12 cơ bản với cách giải nhanh và ngắn gọn nhất
GIẢI TÍCH SBT 12
- Chương 1: Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số
- Chương 2: Hàm số lũy thừa. Hàm số mũ và hàm số Logarit
- Chương 3: Nguyên hàm, tích phân và ứng dụng
- Chương 4: Số phức
- Ôn tập cuối năm Giải tích 12
HÌNH HỌC SBT 12
- Chương 1: Khối đa diện
- Chương 2: Mặt nón, mặt trụ, mặt cầu
- Chương 3: Phương pháp tọa độ trong không gian
- Ôn tập cuối năm Hình học 12
Chương 1: Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số
- Bài 1: Sự đồng biến, nghịch biến của hàm số
- Bài 2: Cực trị của hàm số
- Bài 3: Giá trị lớn nhất và giá trị nhỏ nhất của hàm số
- Bài 4: Đường tiệm cận
- Bài 5: Khảo sát sự biến thiên và vẽ đồ thị của hàm số
- Ôn tập chương 1: Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số
Chương 2: Hàm số lũy thừa. Hàm số mũ và hàm số Logarit
- Bài 1: Lũy thừa
- Bài 2: Hàm số lũy thừa
- Bài 3: Logarit
- Bài 4: Hàm số mũ. Hàm số logarit
- Bài 5: Phương trình mũ và phương trình logarit
- Bài 6: Bất phương trình mũ và bất phương trình logarit
- Ôn tập chương 2: Hàm số lũy thừa, hàm số mũ và hàm số Logarit
Chương 3: Nguyên hàm, tích phân và ứng dụng
- Bài 1: Nguyên hàm
- Bài 2: Tích phân
- Bài 3: Ứng dụng hình học của tích phân
- Ôn tập chương 3: Nguyên hàm, tích phân và ứng dụng
Chương 4: Số phức
- Bài 1: Số phức, biểu diễn hình học số phức
- Bài 2: Phép cộng và phép nhân các số phức
- Bài 3: Phép chia số phức
- Bài 4: Phương trình bậc hai với hệ số thực
- Ôn tập chương 4: Số phức
Chương 1: Khối đa diện
- Bài 1: Khái niệm về khối đa diện
- Bài 2: Khối đa diện lồi và khối đa diện đều
- Bài 3: Khái niệm về thể tích khối đa diện
- Ôn tập chương 1: Khối đa diện
- Đề toán tổng hợp chương 1: Khối đa diện
- Câu hỏi trắc nghiệm chương 1: Khối đa diện
Chương 2: Mặt nón, mặt trụ, mặt cầu
- Bài 1: Khái niệm về mặt tròn xoay
- Bài 2: Mặt cầu
- Đề toán tổng hợp chương 2: Mặt nón, mặt trụ, mặt cầu
- Câu hỏi trắc nghiệm chương 2: Mặt nón, mặt trụ, mặt cầu
Chương 3: Phương pháp tọa độ trong không gian
- Bài 1: Hệ tọa độ trong không gian
- Bài 2: Phương trình mặt phẳng
- Bài 3: Phương trình đường thẳng
- Ôn tập chương 3: Phương pháp tọa độ trong không gian
- Đề toán tổng hợp chương 3: Phương pháp tọa độ trong không gian
- Câu hỏi trắc nghiệm chương 3: Phương pháp tọa độ trong không gian
Ôn tập cuối năm Hình học 12
Lớp 12 | Các môn học Lớp 12 | Giải bài tập, đề kiểm tra, đề thi Lớp 12 chọn lọc
Danh sách các môn học Lớp 12 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2025 ngắn gọn, chi tiết dễ hiểu.
Toán Học
Vật Lý
Hóa Học
Ngữ Văn
- Soạn văn 12
- SBT Ngữ văn lớp 12
- Văn mẫu 12
- Soạn văn 12 chi tiết
- Soạn văn ngắn gọn lớp 12
- Soạn văn 12 siêu ngắn
Sinh Học
GDCD
Tin Học
Tiếng Anh
- SBT Tiếng Anh lớp 12
- Ngữ pháp Tiếng Anh
- SGK Tiếng Anh 12
- SBT Tiếng Anh lớp 12 mới
- SGK Tiếng Anh 12 Mới
Công Nghệ
Lịch Sử & Địa Lý
- Tập bản đồ Địa lí lớp 12
- SBT Địa lí lớp 12
- SGK Địa lí lớp 12
- Tập bản đồ Lịch sử lớp 12
- SBT Lịch sử lớp 12
- SGK Lịch sử lớp 12