Bài 15, 16, 17, 18, 19, 20, 21, 22, 23 trang 19 SBT Hình Học 11 nâng cao
Bài 15
Hợp thành của hai phép đối xứng tâm là phép nào trong các phép sau đây?
(A) Phép đối xứng trục;
(B) Phép đối xứng tâm;
(C) Phép quay;
(D) Phép tịnh tiến.
Lời giải chi tiết:
Đáp án: D
Xét hai phép đối xứng tâm B và C ta có:
\(\begin{array}{l}{D_B}\left( A \right) = A' \Rightarrow \overrightarrow {AA'} = 2\overrightarrow {BA'} \\{D_C}\left( {A'} \right) = A'' \Rightarrow \overrightarrow {A'A''} = 2\overrightarrow {A'C} \\ \Rightarrow \overrightarrow {AA'} + \overrightarrow {A'A''} = 2\overrightarrow {BA'} + 2\overrightarrow {A'C} \\ \Rightarrow \overrightarrow {AA''} = 2\left( {\overrightarrow {BA'} + \overrightarrow {A'C} } \right)\\ \Rightarrow \overrightarrow {AA''} = 2\overrightarrow {BC} \\ \Rightarrow {T_{\overrightarrow {BC} }}\left( A \right) = A''\end{array}\)
Vậy hợp thành của hai phép đối xứng tâm là phép tịnh tiến.
Bài 16
Hợp thành của một phép tịnh tiến và phép đối xứng tâm là phép nào trong các phép sau đây?
(A) Phép đối xứng trục;
(B) Phép đối xứng tâm;
(C) Phép đồng nhất;
(D) Phép tịnh tiến.
Lời giải chi tiết:
Đáp án: B
Xét phép tịnh tiến theo véc tơ \(\overrightarrow u \) và phép đối xứng qua tâm \(C\) ta có:
\(\begin{array}{l}{T_{\overrightarrow u }}\left( A \right) = A' \Rightarrow \overrightarrow {AA'} = \overrightarrow u \\{D_C}\left( {A'} \right) = A''\end{array}\)
Gọi \(C'\) là trung điểm của \(AA''\) thì \(\overrightarrow {CC'} = - \frac{1}{2}\overrightarrow u \) nên \(C'\) cố định.
Do đó \({D_{C'}}\left( A \right) = A''\).
Vậy hợp thành của phép tịnh tiến và phép đối xứng tâm là một phép đối xứng tâm.
Bài 17
Cho hai đường thẳng song song d và d’. Có bao nhiêu phép vi tự với tỉ số k = 20 biến đường thẳng d thành đường thẳng d’?
(A) Không có phép nào;
(B) Có một phép duy nhất;
(C) Chỉ có hai phép;
(D) Có vô số phép.
Lời giải chi tiết:
Đáp án: D
Giả sử d và d’ cách nhau một khoảng \(h = NN'\) không đổi.
Gọi O là tâm vị tự thì \({V_{\left( {O;20} \right)}}\left( M \right) = M'\) \( \Leftrightarrow \overrightarrow {OM'} = 20\overrightarrow {OM} \)
\( \Rightarrow OM' = 20OM\) \( \Rightarrow ON' = 20ON\) \( \Rightarrow NN' = 19ON\) \( \Rightarrow ON = \frac{{NN'}}{{19}} = \frac{h}{{19}}\)
\( \Rightarrow O\) luôn cách \(d\) một khoảng \(\frac{h}{{19}}\) không đổi.
Do đó \(O\) luôn nằm trên đường thẳng \(\Delta \) cách \(d\) một khoảng \(\frac{h}{{19}}\).
Do có vô số điểm \(O\) nên ta có vô số phép vị tự thỏa mãn.
Có vô số phép vị tự thỏa mãn bài toán.
Bài 18
Cho hai đường thẳng cắt nhau d và d’. Có bao nhiêu phép vị tự biến d thành d’?
(A) Không có phép nào;
(B) Có một phép duy nhất;
(C) Chỉ có hai phép;
(D) Có vô số phép.
Lời giải chi tiết:
Đáp án: A
Phép vị tự biến đường thẳng thành đường thẳng song song hoặc trùng với nó nên không có phép vị tự nào biến đường thẳng d thành d’ mà d và d’ cắt nhau.
Bài 19
Cho hai đường thẳng song song d và d’ và một điểm O không nằm trên chúng. Có bao nhiêu phép vị tự tâm O biến đường thẳng d thành đường thẳng d’?
(A) Không có phép nào;
(B) Có một phép duy nhất;
(C) Chỉ có hai phép;
(D) Có vô số phép.
Lời giải chi tiết:
Đáp án: B
Giả sử \(d\left( {O,d} \right) = h,d\left( {O,d'} \right) = h'\).
Xét vị trí điểm \(O\) và hai đường thẳng như hình vẽ.
Khi đó \(\frac{{OM'}}{{OM}} = \frac{{ON'}}{{ON}} = \frac{{h'}}{h}\) \( \Rightarrow \overrightarrow {OM'} = \frac{{h'}}{h}\overrightarrow {OM} \)
Do đó chỉ có 1 phép vị tự tâm O tỉ số \(k = \frac{{h'}}{h}\) thỏa mãn trong trường hợp này.
Tương tự với trường hợp O nằm trong miền giới hạn bởi d và d’ hay điểm O và d’ cùng nằm trong một mặt phẳng bờ là d thì cũng chỉ có 1 phép vị tự thỏa mãn.
Vậy chỉ có 1 phép vị tự thỏa mãn bài toán.
Bài 20
Cho hai đường tròn bằng nhau (O; R) và (O’; R) với tâm O và O’ phân biệt. Có bao nhiêu phép vị tự biến (O; R) thành (O’; R)?
(A) Không có phép nào;
(B) Có một phép duy nhất;
(C) Chỉ có hai phép;
(D) Có vô số phép.
Lời giải chi tiết:
Đáp án: B
Gọi \(I\) là tâm vị tự và \(k\) là tỉ số vị tự thì:
\({V_{\left( {I;k} \right)}}\left( {\left( {O;R} \right)} \right) = \left( {O';R} \right)\) \( \Leftrightarrow \left\{ \begin{array}{l}\overrightarrow {IO'} = k\overrightarrow {IO} \\R' = \left| k \right|R\end{array} \right.\)
Ta có: \(R' = \left| k \right|R \Rightarrow k = \pm 1\)
Nếu \(k = 1\) thì \(\overrightarrow {IO'} = \overrightarrow {IO} \Rightarrow O \equiv O'\) (vô lí)
Nếu \(k = - 1\) thì \(\overrightarrow {IO'} = - \overrightarrow {IO} \) hay \(I\) là trung điểm \(OO'\).
Vậy chỉ có 1 phép vị tự duy nhất là \({V_{\left( {I; - 1} \right)}}\).
Bài 21
Cho đường tròn (O; R). Có bao nhiêu phép vị tự với tâm O biến (O; R) thành chính nó?
(A) Không có phép nào;
(B) Có một phép duy nhất;
(C) Chỉ có hai phép;
(D) Có vô số phép.
Lời giải chi tiết:
Đáp án: C
\({V_{\left( {O;k} \right)}}\) biến \(\left( O \right)\) thành chính nó nếu và chỉ nếu \({V_{\left( {O;k} \right)}}\left( O \right) = O\) và \(R = \left| k \right|R \Leftrightarrow k = \pm 1\)
Vậy chỉ có hai phép vị tự thỏa mãn là \({V_{\left( {O;1} \right)}}\) và \({V_{\left( {O; - 1} \right)}}\).
Bài 22
Cho đường tròn (O;R). Có bao nhiêu phép vị tự biến (O; R) thành chính nó?
(A) Không có phép nào;
(B) Có một phép duy nhất;
(C) Chỉ có hai phép
(D) Có vô số phép.
Lời giải chi tiết:
Đáp án: D
Mọi phép vị tự có tâm bất kì tỉ số \(1\) đều biến đường tròn (O;R) thành chính nó.
Bài 23
Cho hai phép vị tự \({V_{\left( {O;k} \right)}}\) và \({V_{\left( {O';k} \right)}}\) với O và O’ là hai điểm phân biệt và kk’ = 1. Hợp thành của hai phép vị tự đó là phép nào trong các phép sau đây?
(A) Phép tịnh tiến;
(B) Phép đối xứng trục;
(C) Phép đối xứng tâm;
(D) Phép quay.
Lời giải chi tiết:
Đáp án: A
Ta có:
\(\begin{array}{l}{V_{\left( {O;k} \right)}}\left( A \right) = A' \Leftrightarrow \overrightarrow {OA'} = k\overrightarrow {OA} \\{V_{\left( {O';k'} \right)}}\left( {A'} \right) = A'' \Leftrightarrow \overrightarrow {O'A''} = k'\overrightarrow {O'A'} \\ \Rightarrow \overrightarrow {OA''} - \overrightarrow {OO'} = k'\left( {\overrightarrow {OA'} - \overrightarrow {OO'} } \right)\\ \Rightarrow \overrightarrow {OA''} = k'\overrightarrow {OA'} - k'\overrightarrow {OO'} + \overrightarrow {OO'} \\ = k'.k\overrightarrow {OA} - k'\overrightarrow {OO'} + \overrightarrow {OO'} \\ = \overrightarrow {OA} + \left( {1 - k'} \right)\overrightarrow {OO'} \\ \Rightarrow \overrightarrow {OA''} - \overrightarrow {OA} = \left( {1 - k'} \right)\overrightarrow {OO'} \\ \Rightarrow \overrightarrow {AA''} = \left( {1 - k'} \right)\overrightarrow {OO'} \\ \Rightarrow {T_{\overrightarrow u }}\left( A \right) = A''\end{array}\)
ở đó \(\overrightarrow u = \left( {1 - k} \right)\overrightarrow {OO'} \)
Vậy hợp cửa hai phép vị tự trên là phép tịnh tiến theo véc tơ \(\overrightarrow u = \left( {1 - k} \right)\overrightarrow {OO'} \).
Xemloigiai.com
- Bài 1, 2, 3, 4, 5, 6 trang 17 SBT Hình Học 11 nâng cao
- Bài 7, 8, 9, 10, 11, 12, 13, 14 trang 18 SBT Hình Học 11 nâng cao
SBT Toán lớp 11 Nâng cao
Giải sách bài tập toán hình học và đại số lớp 11. Giải chi tiết tất cả câu hỏi trong các chương và bài chi tiết trong SBT hình học và đại số toán 11 nâng cao với cách giải nhanh và ngắn gọn nhất
ĐẠI SỐ VÀ GIẢI TÍCH SBT 11 NÂNG CAO
- CHƯƠNG 1: HÀM SỐ LƯỢNG GIÁC VÀ PHƯƠNG TRÌNH LƯỢNG GIÁC
- CHƯƠNG 2: TỔ HỢP VÀ XÁC SUẤT
- CHƯƠNG 3: DÃY SỐ, CẤP SỐ CỘNG VÀ CẤP SỐ NHÂN
- CHƯƠNG 4: GIỚI HẠN
- CHƯƠNG 5: ĐẠO HÀM
- ÔN TẬP CUỐI NĂM ĐẠI SỐ VÀ GIẢI TÍCH
HÌNH HỌC SBT 11 NÂNG CAO
- CHƯƠNG 1: PHÉP DỜI HÌNH VÀ PHÉP ĐỒNG DẠNG
- CHƯƠNG 2: ĐƯỜNG THẲNG VÀ MẶT PHẲNG TRONG KHÔNG GIAN. QUAN HỆ SONG SONG
- CHƯƠNG 3. VECTƠ KHÔNG GIAN. QUAN HỆ VUÔNG GÓC
- ÔN TẬP CUỐI NĂM - HÌNH HỌC
CHƯƠNG 1: HÀM SỐ LƯỢNG GIÁC VÀ PHƯƠNG TRÌNH LƯỢNG GIÁC
- Bài 1: Các hàm số lượng giác
- Bài 2: Phương trình lượng giác cơ bản
- Bài 3: Một số dạng phương trình lượng giác đơn giản
- Ôn tập chương 1: Hàm số lượng giác và phương trình lượng giác
CHƯƠNG 2: TỔ HỢP VÀ XÁC SUẤT
- Bài 1: Hai quy tắc đếm cơ bản
- Bài 2: Hoán vị, chỉnh hợp và tổ hợp
- Bài 3: Nhị thức Niu - tơn
- BÀI 4: BIẾN CỐ VÀ XÁC SUẤT CỦA BIẾN CỐ
- Bài 4, 5: Biến cố và xác suất của biến cố - Các quy tắc tính xác suất
- Bài 6: Biến ngẫu nhiên rời rạc
- Ôn tập chương 2: Tổ hợp và xác suất
CHƯƠNG 3: DÃY SỐ, CẤP SỐ CỘNG VÀ CẤP SỐ NHÂN
- Bài 1: Phương pháp quy nạp toán học
- Bài 2. Dãy số
- Bài 3. Cấp số cộng
- Bài 4. Cấp số nhân
- Ôn tập chương III - Dãy số, cấp số cộng và cấp số nhân
CHƯƠNG 4: GIỚI HẠN
- Bài 1: Dãy số có giới hạn 0
- Bài 2: Dãy có giới hạn hữu hạn
- Bài 3: Dãy có giới hạn vô cực
- Bài 4: Định nghĩa và một số định lí về giới hạn của hàm số
- Bài 5. Giới hạn một bên
- Bài 6: Một vài quy tắc tìm giới hạn vô cực
- Bài 7: Các dạng vô định
- Bài 8: Hàm số liên tục
- Ôn tập chương IV - Giới hạn - SBT Toán 11 Nâng cao
CHƯƠNG 5: ĐẠO HÀM
- Bài 1: Khái niệm đạo hàm
- Bài 2: Các quy tắc tính đạo hàm
- Bài 3: Đạo hàm của các hàm số lượng giác
- Bài 4: Vi phân
- Bài 5: Đạo hàm cấp cao
- Ôn tập chương V - Đạo hàm
CHƯƠNG 1: PHÉP DỜI HÌNH VÀ PHÉP ĐỒNG DẠNG
- Bài 1, 2: Mở đầu về phép biến hình. Phép tịnh tiến và phép dời hình
- Bài 3: Phép đối xứng trục
- Bài 4: Phép quay và phép đối xứng tâm
- Bài 5: Hai hình bằng nhau
- Bài 6, 7: Phép vị tự. Phép đồng dạng
- Ôn tập chương 1: Phép dời hình và phép đồng dạng
- Bài tập trắc nghiệm chương 1 - Phép dời hình và phép đồng dạng
CHƯƠNG 2: ĐƯỜNG THẲNG VÀ MẶT PHẲNG TRONG KHÔNG GIAN. QUAN HỆ SONG SONG
- Bài 1: Đại cương về đường thẳng và mặt phẳng
- Bài 2: Hai đường thẳng song song
- Bài 3: Đường thẳng song song với mặt phẳng
- Bài 4: Hai mặt phẳng song song
- Bài 5: Phép chiếu song song
- Ôn tập chương II - Đường thẳng và mặt phẳng trong không gian. Quan hệ song song
CHƯƠNG 3. VECTƠ KHÔNG GIAN. QUAN HỆ VUÔNG GÓC
- Bài 1. Vectơ trong không gian. Sự đồng phẳng của các vectơ
- Bài 2, 3, 4: Hai đường thẳng vuông góc. Đường thẳng vuông góc với mặt phẳng. Hai mặt phẳng vuông góc
- Bài 5: Khoảng cách
- Ôn tập chương III. Vectơ trong không gian. Quan hệ vuông góc
- Bài tập trắc nghiệm chương III. Vectơ trong không gian. Quan hệ vuông góc.
Lớp 11 | Các môn học Lớp 11 | Giải bài tập, đề kiểm tra, đề thi Lớp 11 chọn lọc
Danh sách các môn học Lớp 11 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2025 ngắn gọn, chi tiết dễ hiểu.
Toán Học
Vật Lý
Hóa Học
Ngữ Văn
- Soạn văn 11
- SBT Ngữ văn lớp 11
- Văn mẫu 11
- Soạn văn 11 chi tiết
- Soạn văn ngắn gọn lớp 11
- Soạn văn 11 siêu ngắn
Sinh Học
GDCD
Tin Học
Tiếng Anh
Công Nghệ
Lịch Sử & Địa Lý
- Tập bản đồ Địa lí lớp 11
- SBT Địa lí lớp 11
- SGK Địa lí lớp 11
- Tập bản đồ Lịch sử lớp 11
- SBT Lịch sử lớp 11
- SGK Lịch sử lớp 11