Bài 11 trang 147 SGK Giải tích 12

Giải bài 11 trang 147 SGK Giải tích 12. Tính các tích phân sau bằng phương pháp tính tích phân từng phần

    Tính các tích phân sau bằng phương pháp tính tích phân từng phần

    LG a

    a) \(\int_1^{{e^4}} {\sqrt x } \ln xdx\)

    Phương pháp giải:

    +) Sử dụng các công thức nguyên hàm cơ bản để tính tích phân.

    +) Sử dụng phương pháp đưa vào vi phân.

    +) Sử dụng công thức tích phân từng phần: \(\int\limits_a^b {u\left( x \right)dv\left( x \right)}  = \left. {u\left( x \right).v\left( x \right)} \right|_a^b - \int\limits_a^b {v\left( x \right)du\left( x \right).} \)

    Lời giải chi tiết:

    Đặt  \(\left\{ \begin{array}{l}u = \ln x\\dv = \sqrt x dx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = \dfrac{1}{x}dx\\v = \dfrac{2}{3}{x^{\frac{3}{2}}}\end{array} \right..\)

    \(\begin{array}{l}
    \Rightarrow \int\limits_1^{{e^4}} {\sqrt x \ln xdx} = \left. {\dfrac{2}{3}{x^{\frac{3}{2}}}\ln x} \right|_1^{{e^4}} - \int\limits_1^{{e^4}} {\dfrac{2}{3}{x^{\frac{3}{2}}}.\dfrac{1}{x}dx} \\
    = \dfrac{8}{3}{e^6} - \int\limits_1^{{e^4}} {\dfrac{2}{3}{x^{\frac{1}{2}}}dx} = \dfrac{8}{3}{e^6} - \left. {\dfrac{2}{3}.\dfrac{2}{3}{x^{\frac{3}{2}}}} \right|_1^{{e^4}}\\
    = \dfrac{8}{3}{e^6} - \dfrac{4}{9}{e^6} + \dfrac{4}{9}= \dfrac{20}{9}{e^6}+ \dfrac{4}{9}.
    \end{array}\)


    LG b

    b) \(\displaystyle \int_{{\pi  \over 6}}^{{\pi  \over 2}} {{{xdx} \over {{{\sin }^2}x}}} \)

    Lời giải chi tiết:

    Ta có: 

    \(\eqalign{
    & \int_{{\pi \over 6}}^{{\pi \over 2}} {{{xdx} \over {{{\sin }^2}x}}} = \int\limits_{{\pi \over 6}}^{{\pi \over 2}} {xd( - \cot x) = - x\cot x\left| {_{{\pi \over 6}}^{{\pi \over 2}}} \right.} + \int\limits_{{\pi \over 6}}^{{\pi \over 2}} {\cot xdx} \cr 
    & = {{\pi \sqrt 3 } \over 6} + \int\limits_{{\pi \over 6}}^{{\pi \over 2}} {{{d\sin x} \over {{\mathop{\rm s}\nolimits} {\rm{inx}}}}} = {{\pi \sqrt 3 } \over 6} + \ln |sinx|\left| {_{{\pi \over 6}}^{{\pi \over 2}}} \right. = {{\pi \sqrt 3 } \over 6} + \ln 2 \cr} \)

    Cách trình bày khác:

    Đặt \(\left\{ \begin{array}{l}u = x\\dv = \dfrac{1}{{{{\sin }^2}x}}dx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = dx\\v =  - \cot x\end{array} \right.\)

    Khi đó \(I = \left. { - x\cot x} \right|_{\dfrac{\pi }{6}}^{\dfrac{\pi }{2}} + \int\limits_{\dfrac{\pi }{6}}^{\dfrac{\pi }{2}} {\cot xdx} \)\( = \dfrac{\pi }{6}.\sqrt 3  + \int\limits_{\dfrac{\pi }{6}}^{\dfrac{\pi }{2}} {\dfrac{{\cos x}}{{\sin x}}dx} \)

    Đặt \(\sin x = t \Rightarrow dt = \cos xdx\)

    Đổi cận \(x = \dfrac{\pi }{6} \Rightarrow t = \dfrac{1}{2},\) \(x = \dfrac{\pi }{2} \Rightarrow t = 1\)

    \( \Rightarrow I = \dfrac{\pi }{6}.\sqrt 3  + \int\limits_{\dfrac{1}{2}}^1 {\dfrac{{dt}}{t}} \) \( = \sqrt 3 .\dfrac{\pi }{6} + \left. {\ln \left| t \right|} \right|_{\dfrac{1}{2}}^1 = \sqrt 3 .\dfrac{\pi }{6} - \ln \dfrac{1}{2}\)  \( = \dfrac{{\sqrt 3 \pi }}{6} + \ln 2\)


    LG c

    c) \(\int_0^\pi  {(\pi  - x)\sin {\rm{x}}dx} \)

    Lời giải chi tiết:

    Ta có: 

    \(\eqalign{
    & \int_0^\pi {(\pi - x)\sin {\rm{x}}dx} = \int\limits_0^\pi {(\pi - x)d( - {\mathop{\rm cosx}\nolimits} )} \cr 
    & = - (\pi - x)cosx\left| {_0^\pi } \right. + \int\limits_0^\pi {{\mathop{\rm cosxd}\nolimits} (\pi - x) = \pi - s{\rm{inx}}\left| {_0^\pi } \right.} = \pi \cr} \)

    Cách trình bày khác:

    Đặt \(\left\{ \begin{array}{l}u = \pi  - x\\dv = \sin xdx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du =  - dx\\v =  - \cos x\end{array} \right.\)

    \( \Rightarrow I = \left. { - \left( {\pi  - x} \right)\cos x} \right|_0^\pi  - \int\limits_0^\pi  {\cos xdx} \) \( = \pi  - \left. {\sin x} \right|_0^\pi  = \pi  + 0 - 0 = \pi \)


    LG d

    d) \(\int_{ - 1}^0 {(2x + 3){e^{ - x}}} dx\)

    Lời giải chi tiết:

    Ta có: 

    \(\eqalign{
    & \int_{ - 1}^0 {(2x + 3){e^{ - x}}} dx = \int\limits_{ - 1}^0 {(2x + 3)d( - {e^{ - x}}} ) \cr 
    & = (2x + 3){e^{ - x}}\left| {_0^{ - 1}} \right. + \int\limits_{ - 1}^e {{e^{ - x}}} .2dx = e - 3 + 2{e^{ - x}}\left| {_0^1} \right. = 3e - 5 \cr} \)

    Cách trình bày khác:

    Đặt \(\left\{ \begin{array}{l}u = 2x + 3\\dv = {e^{ - x}}dx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = 2dx\\v =  - {e^{ - x}}\end{array} \right.\)

    \( \Rightarrow I = \left. { - \left( {2x + 3} \right){e^{ - x}}} \right|_{ - 1}^0 + 2\int\limits_{ - 1}^0 {{e^{ - x}}dx} \) \( =  - 3 + e - \left. {2{e^{ - x}}} \right|_{ - 1}^0\) \( =  - 3 + e - 2 + 2e = 3e - 5\)

    Xemloigiai.com

    SGK Toán lớp 12

    Giải bài tập toán lớp 12 như là cuốn để học tốt Toán lớp 12. Tổng hợp công thức, lý thuyết, phương pháp giải bài tập giải tích và hình học SGK Toán lớp 12, giúp ôn luyện thi THPT Quốc gia. Giai toan 12 xem mục lục giai toan lop 12 sach giao khoa duoi day

    GIẢI TÍCH 12

    HÌNH HỌC 12

    CHƯƠNG I. ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ

    CHƯƠNG II. HÀM SỐ LŨY THỪA HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT

    CHƯƠNG III. NGUYÊN HÀM - TÍCH PHÂN VÀ ỨNG DỤNG

    CHƯƠNG IV. SỐ PHỨC

    CHƯƠNG I. KHỐI ĐA DIỆN

    CHƯƠNG II. MẶT NÓN, MẶT TRỤ, MẶT CẦU

    CHƯƠNG III. PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN

    Xem Thêm