Giải mục 2 trang 49, 50, 51, 52 SGK Toán 10 tập 1 - Chân trời sáng tạo

Tìm tập xác định của các hàm số sau: Hãy vẽ đường cong đi qua các điểm A, B, S, C, D và nêu nhận xét về hình dạng của đường cong này so với đồ thị hàm số y=-x^2 trên Hình 2 Vẽ đồ thị hàm số y = x^2 - 4x + 3 rồi so sánh đồ thị hàm số này với đồ thị hàm số trong Ví dụ 2z. Nếu nhận xét về hai đồ thị này.

    HĐ Khám phá 2

    a) Xét hàm số\(y = f(x) = {x^2} - 8x + 19 = {(x - 4)^2} + 3\) có bảng giá trị:

    \(x\)

    2

    3

    4

    5

    6

    \(f(x)\)

    7

    4

    3

    4

    7

    Trên mặt phẳng tọa độ, ta có các điểm \((x;f(x))\) với x thuộc bảng giá trị đã cho (hình 1).

    Hãy vẽ đường cong đi qua các điểm A, B, S, C, D và nêu nhận xét về hình dạng của đường cong này so với đồ thị hàm số \(y = {x^2}\) trên Hình 1.

    b) Tương tự xét hàm số \(y = g(x) =  - {x^2} + 8x - 13 =  - {(x - 4)^2} + 3\) có bảng giá trị:

    \(x\)

    2

    3

    4

    5

    6

    \(f(x)\)

    -1

    2

    3

    2

    -1

    Trên mặt phẳng tọa độ, ta có các điểm \((x;f(x))\) với x thuộc bảng giá trị đã cho (hình 2).

    Hãy vẽ đường cong đi qua các điểm A, B, S, C, D và nêu nhận xét về hình dạng của đường cong này so với đồ thị hàm số \(y =  - {x^2}\) trên Hình 2.

     

    Lời giải chi tiết:

    a)

    Đường cong đi qua 5 điểm này có cùng hình dạng với đồ thị hàm số \(y = {x^2}\), cùng có bề lõm quay lên trên.

    b)

    Đường cong đi qua 5 điểm này có cùng hình dạng với đồ thị hàm số \(y =  - {x^2}\), cùng có bề lõm quay xuống dưới.


    Thực hành 2

    Vẽ đồ thị hàm số \(y = {x^2} - 4x + 3\) rồi so sánh đồ thị hàm số này với đồ thị hàm số trong Ví dụ 2z. Nếu nhận xét về hai đồ thị này.

    Phương pháp giải:

    + Xác định đỉnh \(S(\frac{{ - b}}{{2a}};f(\frac{{ - b}}{{2a}}))\)

    + Trục đối xứng \(x = \frac{{ - b}}{{2a}}\)

    + Bề lõm: quay lên trên (nếu a>0), quay xuống dưới nếu a<0.

    + Giao với trục tung tại điểm có tọa độ (0; c).

    Lời giải chi tiết:

    Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai \(y = f(x) = {x^2} - 4x + 3\) là một parabol (P1):

    + Có đỉnh S với hoành độ: \({x_S} = \frac{{ - b}}{{2a}} = \frac{{ - ( - 4)}}{{2.1}} = 2;{y_S} = {2^2} - 4.2 + 3 =  - 1.\)

    + Có trục đối xứng là đường thẳng \(x = 2\) (đường thẳng này đi qua đỉnh S và song song với trục Oy);

    + Bề lõm quay lên trên vì \(a = 1 > 0\)

    + Cắt trục tung tại điểm có tung độ bằng 3, tức là đồ thị đi qua điểm có tọa độ (0; 3).

    Ta vẽ được đồ thị như hình dưới.

    *So sánh với đồ thị hàm số ở Ví dụ 2a:

    Giống nhau: Có chung trục đối xứng

    Khác nhau:

    Điểm đỉnh và giao điểm với trục tung của hai hàm số đối xứng với nhau qua trục Ox.

    Bề lõm của (P) xuống dưới còn (P1) quay lên trên.

    Nhận xét chung: Hai đồ thị này đối xứng với nhau qua trục Ox.

    SGK Toán 10 - Chân trời sáng tạo

    Để học tốt SGK Toán 10 - Chân trời sáng tạo, loạt bài giải bài tập SGK Toán 10 - Chân trời sáng tạo đầy đủ kiến thức, lý thuyết và bài tập được biên soạn bám sát theo nội dung sách giáo khoa Lớp 10.

    Giải Toán 10 tập 1 - Chân trời sáng tạo

    Giải Toán 10 tập 2 - Chân trời sáng tạo

    Chương I. Mệnh đề và tập hợp

    Chương II. Bất phương trình và hệ bất phương trình bậc nhất hai ẩn

    Chương III. Hàm số bậc hai và đồ thị

    Chương IV. Hệ thức lượng trong tam giác

    Chương V. Vecto

    Chương VI. Thống kê

    Hoạt động thực hành và trải nghiệm

    Chương VII. Bất phương trình bậc hai một ẩn

    Chương VIII. Đại số tổ hợp

    Chương IX. Phương pháp tọa độ trong mặt phẳng

    Chương X. Xác suất

    Hoạt động thực hành và trải nghiệm trang 87

    Lớp 10 | Các môn học Lớp 10 | Giải bài tập, đề kiểm tra, đề thi Lớp 10 chọn lọc

    Danh sách các môn học Lớp 10 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2025 ngắn gọn, chi tiết dễ hiểu.

    Toán Học

    Vật Lý

    Hóa Học

    Ngữ Văn

    Sinh Học

    GDCD

    Tin Học

    Tiếng Anh

    Công Nghệ

    Lịch Sử & Địa Lý

    Tác giả & Tác phẩm

    Hoạt động trải nghiệm & Hướng nghiệp