Giải mục 2 trang 23, 24, 25 SGK Toán 10 tập 1 - Chân trời sáng tạo

Cho tập hợp E ={ x thuộc N |x < 8} ,A = { 0;1;2;3;4} ,B = { 3;4;5} Xác định các tập hợp sau đây:

    HĐ Khám phá 2

    Trở lại bảng thông tin về kết quả phỏng vấn tuyển dụng ở Hoạt động khám phá 1.

    a) Xác định tập hợp E gồm những ứng viên đạt yêu cầu về chuyên môn nhưng không đạt yêu cầu về ngoại ngữ.

    b) Xác định tập hợp F gồm những ứng viên không đạt yêu cầu về chuyên môn.

    Phương pháp giải:

    Viết tập hợp bằng cách liệt kê các phần tử.

    Lời giải chi tiết:

    a) Tập hợp E gồm những ứng viên đạt yêu cầu về chuyên môn nhưng không đạt yêu cầu về ngoại ngữ là: \(E = \{ {a_2};{a_7}\} \)

    b) Xác định tập hợp F gồm những ứng viên không đạt yêu cầu về chuyên môn là: \(F = \{ {a_3};{a_4};{a_9}\} \)


    Thực hành 3

    Cho tập hợp \(E = \{ x \in \mathbb{N}|x < 8\} ,A = \{ 0;1;2;3;4\} ,B = \{ 3;4;5\} \)

    Xác định các tập hợp sau đây:

    a) A\B, B\A và \((A\backslash B) \cap {\rm{(}}B\backslash A)\)

    b) \({C_E}(A \cap B)\) và \(({C_E}A) \cap ({C_E}B)\)

    c) \({C_E}(A \cup B)\) và \(({C_E}A) \cup ({C_E}B)\)

    Phương pháp giải:

    Lời giải chi tiết:

    \(E = \{ x \in \mathbb{N}|x < 8\}  = \{ 0;1;2;3;4;5;6;7\} \)

    a) Ta có: \(A\backslash B = \left\{ {0;1;2} \right\}\), \(B\backslash A = \left\{ 5 \right\},\)\((A\backslash B) \cap {\rm{(}}B\backslash A) = \emptyset \)

    b) Ta có: \(A \cap B = \{ 3;4\} ,\;{C_E}(A \cap B) = \{ 0;1;2;5;6;7\} \)

    \({C_E}A = \{ 5;6;7\} ,\;{C_E}B = \{ 0;1;2;6;7\}  \Rightarrow ({C_E}A) \cap ({C_E}B) = \{ 6;7\} \)

    c) Ta có: \(A \cup B = \{ 0;1;2;3;4;5\} ,\;{C_E}(A \cup B) = \{ 6;7\} \)

    \({C_E}A = \{ 5;6;7\} ,\;{C_E}B = \{ 0;1;2;6;7\}  \Rightarrow ({C_E}A) \cup ({C_E}B) = \{ 0;1;2;5;6;7\} \)


    Thực hành 4

    Xác định các tập hợp sau đây:

    a) \((1;3) \cup [ - 2;2]\)

    b) \(( - \infty ;1) \cap [0;\pi ]\)

    c) \([\frac{1}{2};3){\rm{\backslash }}(1; + \infty )\)

    d) \({C_\mathbb{R}}[ - 1; + \infty )\)

    Phương pháp giải:

    Biểu diễn các tập hợp trên trục số

    Lời giải chi tiết:

    a) Để xác định tập hợp \(A = (1;3) \cup [ - 2;2]\), ta vẽ sơ đồ sau đây:

    Từ sơ đồ, ta thấy \(A = [ - 2;3)\)

    b) Để xác định tập hợp \(B = ( - \infty ;1) \cap [0;\pi ]\), ta vẽ sơ đồ sau đây:

    Từ sơ đồ, ta thấy \(B = [0;1)\)

     c) Để xác định tập hợp \(C = [\frac{1}{2};3){\rm{\backslash }}(1; + \infty )\), ta vẽ sơ đồ sau đây:

    Từ sơ đồ, ta thấy \(C = [\frac{1}{2};1]\)

    d) Để xác định tập hợp \(D = {C_\mathbb{R}}[ - 1; + \infty )\), ta vẽ sơ đồ sau đây:

    Từ sơ đồ, ta thấy \(D = ( - \infty ; - 1)\)

    SGK Toán 10 - Chân trời sáng tạo

    Để học tốt SGK Toán 10 - Chân trời sáng tạo, loạt bài giải bài tập SGK Toán 10 - Chân trời sáng tạo đầy đủ kiến thức, lý thuyết và bài tập được biên soạn bám sát theo nội dung sách giáo khoa Lớp 10.

    Giải Toán 10 tập 1 - Chân trời sáng tạo

    Giải Toán 10 tập 2 - Chân trời sáng tạo

    Chương I. Mệnh đề và tập hợp

    Chương II. Bất phương trình và hệ bất phương trình bậc nhất hai ẩn

    Chương III. Hàm số bậc hai và đồ thị

    Chương IV. Hệ thức lượng trong tam giác

    Chương V. Vecto

    Chương VI. Thống kê

    Hoạt động thực hành và trải nghiệm

    Chương VII. Bất phương trình bậc hai một ẩn

    Chương VIII. Đại số tổ hợp

    Chương IX. Phương pháp tọa độ trong mặt phẳng

    Chương X. Xác suất

    Hoạt động thực hành và trải nghiệm trang 87

    Lớp 10 | Các môn học Lớp 10 | Giải bài tập, đề kiểm tra, đề thi Lớp 10 chọn lọc

    Danh sách các môn học Lớp 10 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2025 ngắn gọn, chi tiết dễ hiểu.

    Toán Học

    Vật Lý

    Hóa Học

    Ngữ Văn

    Sinh Học

    GDCD

    Tin Học

    Tiếng Anh

    Công Nghệ

    Lịch Sử & Địa Lý

    Tác giả & Tác phẩm

    Hoạt động trải nghiệm & Hướng nghiệp