Giải mục 1 trang 51, 52 SGK Toán 10 tập 1 - Kết nối tri thức

Cho hình thoi ABCD cới cạnh có độ dài bằng 1 và BAD = 120 Cho hình bình hành ABCD. Tìm mối quan hệ giữa hai vectơ Trong hình 4.14a, hãy chỉ ra vectơ Với hai vectơ a, b cho trước, lấy một điểm A vẽ các vectơ

    HĐ1

    Với hai vectơ \(\overrightarrow a ,\overrightarrow b \) cho trước, lấy một điểm A vẽ các vectơ \(\overrightarrow {AB}  = \overrightarrow a ,\;\overrightarrow {BC}  = \overrightarrow b \). Lấy điểm A’ khác A và cũng vẽ các vectơ \(\overrightarrow {A'B'}  = \overrightarrow a ,\;\overrightarrow {B'C'}  = \overrightarrow b \). Hỏi hai vectơ \(\overrightarrow {AC} \) và \(\overrightarrow {A'C'} \) có mối quan hệ gì?

    Phương pháp giải:

    Hai vectơ bằng nhau nếu chúng có cùng độ dài và cùng hướng.

    Xét độ dài và hướng của hai vectơ \(\overrightarrow {AC} \) và \(\overrightarrow {A'C'} \) để suy ra mối quan hệ của chúng.

    Lời giải chi tiết:

    \(\overrightarrow {AB}  = \overrightarrow a \;\;\, \Rightarrow \left\{ \begin{array}{l}AB//\;a\\AB = a\end{array} \right.\) và \(\overrightarrow {A'B'}  = \overrightarrow a \;\;\, \Rightarrow \left\{ \begin{array}{l}A'B'\;//\;a\\A'B' = a\end{array} \right.\)

    \( \Rightarrow \left\{ \begin{array}{l}AB//\;A'B'\\AB = A'B'\end{array} \right.\)

    Tương tự, ta cũng suy ra \(\left\{ \begin{array}{l}BC//\;B'C'\\BC = B'C'\end{array} \right.\)

    \( \Rightarrow \Delta ABC = \Delta A'B'C'\)(c-g-c)

    \(\left\{ \begin{array}{l}AC//\;A'C'\\AC = A'C'\end{array} \right.\)

    Dễ dàng suy ra  \(\overrightarrow {AC}  = \overrightarrow {A'C'} \).


    HĐ2

    Cho hình bình hành ABCD. Tìm mối quan hệ giữa hai vectơ \(\overrightarrow {AB}  + \overrightarrow {AD} \) và \(\overrightarrow {AC} \)

    Phương pháp giải:

    Bước 1: Xác định vectơ \(\overrightarrow {AB}  + \overrightarrow {AD} \) bằng cách thay vectơ \(\overrightarrow {AD} \) bởi vectơ bằng nó mà có điểm đầu là B.

    Bước 2: So sánh với vectơ \(\overrightarrow {AC} \)

    Lời giải chi tiết:

    Vì ABCD là hình bình hành nên \(\left\{ \begin{array}{l}AD//\;BC\\AD = BC\end{array} \right.\), hay \(\overrightarrow {AD}  = \overrightarrow {BC} \).

    Do đó \(\overrightarrow {AB}  + \overrightarrow {AD}  = \overrightarrow {AB}  + \overrightarrow {BC}  = \overrightarrow {AC} \).


    HĐ3

    a) Trong hình 4.14a, hãy chỉ ra vectơ \(\overrightarrow a  + \overrightarrow b \)và vectơ \(\overrightarrow b  + \overrightarrow a \).

    b) Trong hình 4.14b, hãy chỉ ra vectơ \(\left( {\overrightarrow a  + \overrightarrow b } \right) + \overrightarrow c \)và vectơ \(\overrightarrow a  + \left( {\overrightarrow b  + \overrightarrow c } \right)\).

    Phương pháp giải:

    Nếu \(\overrightarrow {AB}  = \overrightarrow a ,\;\overrightarrow {BC}  = \overrightarrow b \) thì \(\overrightarrow a  + \overrightarrow b  = \overrightarrow {AB}  + \overrightarrow {BC}  = \overrightarrow {AC} \)

    Lời giải chi tiết:

    a) Ta có: \(\overrightarrow {AB}  = \overrightarrow a ,\;\overrightarrow {BC}  = \overrightarrow b \) nên \(\overrightarrow a  + \overrightarrow b  = \overrightarrow {AB}  + \overrightarrow {BC}  = \overrightarrow {AC} \)

    Mặt khác: \(\overrightarrow {AD}  = \overrightarrow b ,\;\overrightarrow {DC}  = \overrightarrow a \) nên \(\overrightarrow b  + \overrightarrow a  = \overrightarrow {AD}  + \overrightarrow {DC}  = \overrightarrow {AC} \)

    Do đó \(\overrightarrow a  + \overrightarrow b  = \overrightarrow b  + \overrightarrow a \).

    b) Theo câu a) ta có \(\overrightarrow a  + \overrightarrow b  = \overrightarrow {AC} \) và \(\overrightarrow {CD}  = \overrightarrow c \) nên \(\left( {\overrightarrow a  + \overrightarrow b } \right) + \overrightarrow c  = \overrightarrow {AC}  + \overrightarrow {CD}  = \overrightarrow {AD} \).

    Mặt khác: \(\overrightarrow {BC}  = \overrightarrow b ,\;\overrightarrow {CD}  = \overrightarrow c \) nên \(\overrightarrow b  + \overrightarrow c  = \overrightarrow {BC}  + \overrightarrow {CD}  = \overrightarrow {BD} \)

    Và \(\overrightarrow a  = \overrightarrow {AB} \) nên \(\overrightarrow a  + \left( {\overrightarrow b  + \overrightarrow c } \right) = \overrightarrow {AB}  + \overrightarrow {BD}  = \overrightarrow {AD} \)

    Vậy \(\left( {\overrightarrow a  + \overrightarrow b } \right) + \overrightarrow c  = \overrightarrow a  + \left( {\overrightarrow b  + \overrightarrow c } \right)\)


    Luyện tập 1

    Cho hình thoi ABCD cới cạnh có độ dài bằng 1 và \(\widehat {BAD} = {120^o}\). Tính độ dài của các vectơ \(\overrightarrow {CB}  + \overrightarrow {CD} ,\;\overrightarrow {DB}  + \overrightarrow {CD}  + \overrightarrow {BA} .\)

    Lời giải chi tiết:

    \(\overrightarrow {CD}  = \overrightarrow {BA} \) do hai vectơ \(\overrightarrow {CD} ,\;\overrightarrow {BA} \) cùng hướng và \(CD = BA\).

    \(\begin{array}{l} \Rightarrow \overrightarrow {CB}  + \overrightarrow {CD}  = \overrightarrow {CB}  + \overrightarrow {BA}  = \overrightarrow {CA} \\ \Leftrightarrow \left| {\overrightarrow {CB}  + \overrightarrow {CD} } \right| = \left| {\overrightarrow {CA} } \right| = CA\end{array}\)

     

    Xét tam giác ABC, ta có:

    \(BA = BC\) và \(\widehat {BAC} = \frac{1}{2}.\widehat {BAD} = {60^o}\)

    \( \Rightarrow \Delta ABC\) đều, hay \(CA = BC = 1\)

    Vậy \(\left| {\overrightarrow {CB}  + \overrightarrow {CD} } \right| = 1.\)

    Dựa vào tính chất kết hợp, ta có:

    \(\begin{array}{l}\overrightarrow {DB}  + \overrightarrow {CD}  + \overrightarrow {BA}  = \left( {\overrightarrow {DB}  + \overrightarrow {CD} } \right) + \overrightarrow {BA} \\ = \left( {\overrightarrow {CD}  + \overrightarrow {DB} } \right) + \overrightarrow {BA}  = \overrightarrow {CB}  + \overrightarrow {BA}  = \overrightarrow {CA} .\\ \Rightarrow \left| {\overrightarrow {DB}  + \overrightarrow {CD}  + \overrightarrow {BA} } \right| = \left| {\overrightarrow {CA} } \right| = CA = 1.\end{array}\)

    SGK Toán 10 - Kết nối tri thức

    Để học tốt SGK Toán 10 - Kết nối tri thức, loạt bài giải bài tập SGK Toán 10 - Kết nối tri thức đầy đủ kiến thức, lý thuyết và bài tập được biên soạn bám sát theo nội dung sách giáo khoa Lớp 10.

    Giải Toán 10 tập 1 - Kết nối tri thức

    Giải Toán 10 tập 2 - Kết nối tri thức

    Chương I. Mệnh đề và tập hợp

    Chương II. Bất phương trình và hệ bất phương trình bậc nhất hai ẩn

    Chương III. Hệ thức lượng trong tam giác

    Chương IV. Vectơ

    Chương V. Các số đặc trưng của mẫu số liệu không ghép nhóm

    Hoạt động thực hành trải nghiệm

    Chương VI. Hàm số, đồ thị và ứng dụng

    Chương VII. Phương pháp tọa độ trong mặt phẳng

    Chương VIII. Đại số tổ hợp

    Chương IX. Tính xác suất theo định nghĩa cổ điển

    Lớp 10 | Các môn học Lớp 10 | Giải bài tập, đề kiểm tra, đề thi Lớp 10 chọn lọc

    Danh sách các môn học Lớp 10 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2025 ngắn gọn, chi tiết dễ hiểu.

    Toán Học

    Vật Lý

    Hóa Học

    Ngữ Văn

    Sinh Học

    GDCD

    Tin Học

    Tiếng Anh

    Công Nghệ

    Lịch Sử & Địa Lý

    Tác giả & Tác phẩm

    Hoạt động trải nghiệm & Hướng nghiệp