Câu 4.55 trang 184 sách bài tập Giải tích 12 Nâng cao

Trong mặt phằng phức xét ngũ giác đều ABCDE nội tiếp đường tròn đơn vị. A là điểm biểu diễn số 1

    Trong mặt phẳng phức xét ngũ giác đều ABCDE nội tiếp đường tròn đơn vị. A là điểm biểu diễn số 1 (giả sử đi dọc chu vi đa giác theo ngược chiều kim đồng hồ gặp các đỉnh kế tiếp B, C, D, E). Kí hiệu \({z_1},{z_2},{z_3},{z_4}\) là các số phức theo thứ tự biểu diễn bởi các điểm B, C, D, E.

    a) Chứng minh rằng \(1,{z_1},{z_2},{z_3},{z_4}\) là các nghiệm của phương trình \({z^5} - 1 = 0\)\({z_1} + {1 \over {{z_1}}} = 2\cos {{2\pi } \over 5}\)

    b) Viết \({z^5} - 1 = \left( {z - 1} \right)\left( {{z^4} + {z^3} + {z^2} + z + 1} \right)\) rồi đưa phương trình \({z^4} + {z^3} + {z^2} + z + 1 = 0\) về phương trình bậc hai đối với ẩn phụ \({\rm{w}} = z + {1 \over z}\). Từ đó suy ra \(\cos {{2\pi } \over 5} = {{ - 1 + \sqrt 5 } \over 4}\)

    Giải

    a) \({z_1} = \cos {{2\pi } \over 5} + i\sin {{2\pi } \over 5},{z_2} = \cos {{4\pi } \over 5} + i\sin {{4\pi } \over 5}\)

       \({z_3} = \cos {{6\pi } \over 5} + i\sin {{6\pi } \over 5},{z_4} = \cos {{8\pi } \over 5} + i\sin {{8\pi } \over 5}\)

    Từ đó theo công thức Moa-vrơ, \(1,{z_1},{z_2},{z_3},{z_4}\) là nghiệm các phương trình \({z^5} - 1 = 0\) (đó là tất cả các nghiệm vì phương trình có bậc 5).

    \({z_1} + {1 \over {{z_1}}} = {z_1} + {\bar z_1} = 2\cos {{2\pi } \over 5}\)

    b) Với \(z \ne 0,\)

    \({z^4} + {z^3} + {z^2} + z + 1 = {z^2}\left( {{z^2} + {1 \over {{z^2}}} + z + {1 \over z} + 1} \right)\)

    \( = {z^2}\left( {{{\left( {z + {1 \over z}} \right)}^2} + \left( {z + {1 \over z}} \right) - 1} \right) \)

    \(= {z^2}\left( {{{\rm{w}}^2} + {\rm{w}} - 1} \right)\), trong đó \({\rm{w}} = z + {1 \over z}\)

    Phương trình \({{\rm{w}}^2} + {\rm{w}} - 1 = 0\) có hai nghiệm là \({{ - 1 \pm \sqrt 5 } \over 2}\)

    Vì \({z_1},{z_2},{z_3},{z_4}\) là bốn nghiệm của phương trình \({z^4} + {z^3} + {z^2} + z + 1 = 0\) tức là nghiệm của phương trình:

    \({\left( {z + {1 \over z}} \right)^2} + \left( {z + {1 \over z}} \right) - 1 = 0\) và \({z_4} = {\bar z_1} = {1 \over {{z_1}}},{z_3} = {\bar z_2} = {1 \over {{z_2}}}\)  nên \({z_1} + {1 \over {{z_1}}},{z_2} + {1 \over {{z_2}}}\) là hai nghiệm phân biệt của phương trình \({{\rm{w}}^2} + {\rm{w}} - 1 = 0\)

    Từ đó suy ra \(2\cos {{2\pi } \over 5} = {{ - 1 + \sqrt 5 } \over 2}\) (còn \(2\cos {{4\pi } \over 5} = {{ - 1 - \sqrt 5 } \over 2}\)) để ý rằng \(\cos {{2\pi } \over 5} > 0,\cos {{4\pi } \over 5} < 0\) (h.4.14)

                 

                                   

    Xemloigiai.com

    SBT Toán 12 Nâng cao

    Lời giải chi tiết, đáp án bài tập SBT Giải tích, Hình học 12 Nâng cao. Tất cả lý thuyết, bài tập vận dụng, thực hành Toán 12 Nâng cao

    PHẦN SBT GIẢI TÍCH 12 NÂNG CAO

    PHẦN SBT HÌNH HỌC 12 NÂNG CAO

    CHƯƠNG I: ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ

    CHƯƠNG II: HÀM SỐ LŨY THỪA, HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT

    CHƯƠNG III: NGUYÊN HÀM, PHÂN TÍCH VÀ ỨNG DỤNG

    CHƯƠNG IV: SỐ PHỨC

    CHƯƠNG I: KHỐI ĐA DIỆN VÀ THỂ TÍCH CỦA CHÚNG

    CHƯƠNG II: MẶT CẦU, MẶT TRỤ, MẶT NÓN

    CHƯƠNG III: PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN