Câu 3.4 trang 86 sách bài tập Đại số và Giải tích 11 Nâng cao

Cho n là một số nguyên dương. Chứng minh rằng

    Cho n là một số nguyên dương. Chứng minh rằng

    LG a

    \(n\left( {2{n^2} - 3n + 1} \right)\) chia hết cho 6

    Lời giải chi tiết:

    Bằng phương pháp quy nạp, ta sẽ chứng minh

                                    \(n\left( {2{n^2} - 3n + 1} \right) \vdots \,6\)                     (1)

    Với mọi \(n \in N^*\)

    Với \(n = 1,\) ta có \(n\left( {2{n^2} - 3n + 1} \right) = 0.\) Hiển nhiên \(0\; \vdots\; 6,\) và vì thế (1) đúng khi \(n = 1\)

    Giả sử đã có (1) đúng khi \(n = k,k \in {N^ * }\), tức là \(k\left( {2{k^2} - 3k + 1} \right) \;\vdots \;6,\) ta sẽ chứng minh nó cũng đúng khi \(n = k + 1\)

    Thật vậy, do \(\left( {k + 1} \right)\left[ {2{{\left( {k + 1} \right)}^2} - 3\left( {k + 1} \right) + 1} \right] \)

    \(= k\left( {2{k^2} - 3k + 1} \right) + 6{k^2}\) nên từ gải thiết quy nạp suy ra \(\left( {k + 1} \right)\left[ {2{{\left( {k + 1} \right)}^2} - 3\left( {k + 1} \right) + 1} \right] \;\vdots\; 6,\) nghĩa là (1) đúng khi \(n = k + 1\)

    Từ các chứng minh trên suy ra (1)  đúng với mọi \(n \in N^*.\)


    LG b

     \({11^{n + 1}} + {12^{2n - 1}}\) chia hết cho 133


    Lời giải chi tiết:

    Ta sẽ chứng minh

                 \({11^{n + 1}} + {12^{2n - 1}}\; \vdots \;133\)                           (2)

    Với mọi \(n \in N^*,\) bằng phương pháp quy nạp.

    Với \(n = 1,\) ta có \({11^{n + 1}} + {12^{2n - 1}} = {11^2} + 12 = 133.\) Vì thế (2) đúng khi \(n = 1.\)

    Giả sử đã có (2) đúng khi \(n = k,k \in N^*,\) ta sẽ chứng minh nó cũng đúng khi \(n = k + 1\)

    Thật vậy ta có

    \(\eqalign{
    & {11^{(k + 1) + 1}} + {12^{2(k + 1) - 1}}\cr& = 11.\left( {{{11}^{k + 1}} + {{12}^{2k - 1}}} \right) + {12^{2k - 1}}.({12^2} - 11) \cr 
    & = 11.\left( {{{11}^{k + 1}} + {{12}^{2k - 1}}} \right) + {133.12^{2k - 1}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(3) \cr} \)

    Mà \({11^{k + 1}} + {12^{2k - 1}}\; \vdots \;133\) (theo giả thiết quy nạp) nên từ (3) suy ra

                                    \({11^{(k + 1) + 1}} + {12^{2(k + 1) - 1}} \;\vdots \;133\)

    Nghĩa là (2) đúng khi \(n = k + 1\)

    Từ các chứng minh trên suy ra (2) đúng với mọi \(n \in N^*\)

    Xemloigiai.com

    SBT Toán lớp 11 Nâng cao

    Giải sách bài tập toán hình học và đại số lớp 11. Giải chi tiết tất cả câu hỏi trong các chương và bài chi tiết trong SBT hình học và đại số toán 11 nâng cao với cách giải nhanh và ngắn gọn nhất

    ĐẠI SỐ VÀ GIẢI TÍCH SBT 11 NÂNG CAO

    HÌNH HỌC SBT 11 NÂNG CAO

    CHƯƠNG 1: HÀM SỐ LƯỢNG GIÁC VÀ PHƯƠNG TRÌNH LƯỢNG GIÁC

    CHƯƠNG 2: TỔ HỢP VÀ XÁC SUẤT

    CHƯƠNG 3: DÃY SỐ, CẤP SỐ CỘNG VÀ CẤP SỐ NHÂN

    CHƯƠNG 4: GIỚI HẠN

    CHƯƠNG 5: ĐẠO HÀM

    CHƯƠNG 1: PHÉP DỜI HÌNH VÀ PHÉP ĐỒNG DẠNG

    CHƯƠNG 2: ĐƯỜNG THẲNG VÀ MẶT PHẲNG TRONG KHÔNG GIAN. QUAN HỆ SONG SONG

    CHƯƠNG 3. VECTƠ KHÔNG GIAN. QUAN HỆ VUÔNG GÓC

    Lớp 11 | Các môn học Lớp 11 | Giải bài tập, đề kiểm tra, đề thi Lớp 11 chọn lọc

    Danh sách các môn học Lớp 11 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2025 ngắn gọn, chi tiết dễ hiểu.

    Toán Học

    Vật Lý

    Hóa Học

    Ngữ Văn

    Sinh Học

    GDCD

    Tin Học

    Tiếng Anh

    Công Nghệ

    Lịch Sử & Địa Lý

    Tác giả & Tác phẩm