Câu 23 trang 211 sách bài tập Giải tích 12 Nâng cao

Cho số phức

    Cho số phức \({\rm{w}} = \bar z{{1 - 3i} \over {1 + 2i}},\) trong đó \(z = \cos \varphi  + i\sin \varphi ,\left( {\varphi  \in R} \right)\)

    a) Hãy viết số phức w dưới dạng lượng giác.

    b) Xác định tập hợp các điểm trong mặt phẳng phức biểu diễn các số phức w nói trên khi \(\varphi \)) thay đổi, \(0 \le \varphi  \le \pi \)

    Giải

    a) Ta có \(\bar z = \cos \varphi  - i\sin \varphi  = \cos \left( { - \varphi } \right) + i\sin \left( { - \varphi } \right),\)

    \({{1 - 3i} \over {1 + 2i}} =  - \left( {1 + i} \right) = \sqrt 2 \left( {\cos {{5\pi } \over 4} + i\sin {{5\pi } \over 4}} \right)\)

    Vậy \({\rm{w}} = \bar z{{1 - 3i} \over {1 + 2i}} = \sqrt 2 \left[ {\cos \left( {{{5\pi } \over 4} - \varphi } \right) + i\sin \left( {{{5\pi } \over 4} - \varphi } \right)} \right]\)

    b) Do \(0 \le \varphi  \le \pi \) nên \({\pi  \over 4} \le {{5\pi } \over 4} - \varphi  \le {{5\pi } \over 4}.\)

    Vậy tập hợp cần tìm là nửa đường tròn tâm O, bán kính bằng \(\sqrt 2 \), nằm phía trên đường phân giác của góc phần tư thứ nhất của hệ tọa độ. (h.3)

              

    Xemloigiai.com

                                         

     

     

    SBT Toán 12 Nâng cao

    Lời giải chi tiết, đáp án bài tập SBT Giải tích, Hình học 12 Nâng cao. Tất cả lý thuyết, bài tập vận dụng, thực hành Toán 12 Nâng cao

    PHẦN SBT GIẢI TÍCH 12 NÂNG CAO

    PHẦN SBT HÌNH HỌC 12 NÂNG CAO

    CHƯƠNG I: ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ

    CHƯƠNG II: HÀM SỐ LŨY THỪA, HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT

    CHƯƠNG III: NGUYÊN HÀM, PHÂN TÍCH VÀ ỨNG DỤNG

    CHƯƠNG IV: SỐ PHỨC

    CHƯƠNG I: KHỐI ĐA DIỆN VÀ THỂ TÍCH CỦA CHÚNG

    CHƯƠNG II: MẶT CẦU, MẶT TRỤ, MẶT NÓN

    CHƯƠNG III: PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN