Các công thức lãi kép
1. Lãi kép theo định kì
- Là thể thức mà hết kì hạn này, tiền lãi được nhập vào vốn của kì tiếp theo.
2. Một số dạng toán về lãi suất
Dạng 1: Bài toán tiết kiệm (Thể thức lãi kép không kỳ hạn)
Một người gửi vào ngân hàng số tiền \(A\) đồng, lãi suất \(r\) mỗi tháng theo hình thức lãi kép, gửi theo phương thức không kì hạn. Tính số tiền cả vốn lẫn lãi mà người đó nhận được sau \(N\) tháng?
Phương pháp xây dựng công thức:
Gọi \({T_N}\) là số tiền cả vốn lẫn lãi sau \(N\) tháng. Ta có:
- Sau 1 tháng \(\left( {k = 1} \right):{T_1} = A + A.r = A\left( {1 + r} \right)\).
- Sau 2 tháng \(\left( {k = 2} \right):{T_2} = A\left( {1 + r} \right) + A\left( {1 + r} \right).r = A{\left( {1 + r} \right)^2}\)
…
- Sau \(N\) tháng \(\left( {k = N} \right):{T_N} = A{\left( {1 + r} \right)^N}\)
Vậy số tiền cả vốn lẫn lãi người đó có được sau \(N\) tháng là:
\({T_N} = A{\left( {1 + r} \right)^N}\)

Lãi suất thường được cho ở dạng \(a\% \) nên khi tính toán ta phải tính \(r = a:100\) rồi mới thay vào công thức.
Dạng 2: Bài toán tiết kiệm (Thể thức lãi kép có kỳ hạn)
Một người gửi vào ngân hàng số tiền \(A\) đồng, lãi suất \(r\) mỗi tháng theo hình thức lãi kép, gửi theo phương thức có kì hạn \(m\) tháng. Tính số tiền cả vốn lẫn lãi mà người đó nhận được sau \(N\) kì hạn?
Phương pháp:
Bài toán này tương tự bài toán ở trên, nhưng ta sẽ tính lãi suất theo định kỳ \(m\) tháng là: \(r' = m.r\).
Sau đó áp dụng công thức \({T_N} = A{\left( {1 + r'} \right)^N}\) với \(N\) là số kì hạn.

Trong cùng một kì hạn, lãi suất sẽ gống nhau mà không được cộng vào vốn để tính lãi kép.
Ví dụ: Một người gửi tiết kiệm \(100\) triệu vào ngân hàng theo mức kì hạn \(6\) tháng với lãi suất \(0,65\% \) mỗi tháng. Hỏi sau \(10\) năm, người đó nhận được bao nhiêu tiền cả vốn lẫn lãi, biết rằng người đó không rút tiền trong \(10\) năm đó.
Giải:
- Số kỳ hạn \(N = \dfrac{{10.12}}{6} = 20\) kỳ hạn.
- Lãi suất theo định kỳ \(6\) tháng là \(6.0,65\% = 3,9\% \).
Số tiền cả vốn lẫn lãi người đó có được sau \(10\) năm là: \(T = 100{\left( {1 + 3,9\% } \right)^{20}} = 214,9\) (triệu)
Dạng 3: Bài toán tích lũy (Hàng tháng (quý, năm,…) gửi một số tiền cố định vào ngân hàng)
Một người gửi vào ngân hàng số tiền \(A\) đồng mỗi tháng với lãi suất mỗi tháng là \(r\). Hỏi sau \(N\) tháng, người đó có tất cả bao nhiêu tiền trong ngân hàng?
Phương pháp xây dựng công thức:
Gọi \({T_N}\) là số tiền có được sau \(N\) tháng.
- Cuối tháng thứ 1: \({T_1} = A\left( {1 + r} \right)\).
- Đầu tháng thứ 2: \(A\left( {1 + r} \right) + A = \dfrac{A}{r}\left[ {{{\left( {1 + r} \right)}^2} - 1} \right]\)
- Cuối tháng thứ 2: \({T_2} = \dfrac{A}{r}\left[ {{{\left( {1 + r} \right)}^2} - 1} \right] + \dfrac{A}{r}\left[ {{{\left( {1 + r} \right)}^2} - 1} \right].r = \dfrac{A}{r}\left[ {{{\left( {1 + r} \right)}^2} - 1} \right]\left( {1 + r} \right)\)
…
- Đầu tháng thứ N: \(\dfrac{A}{r}\left[ {{{\left( {1 + r} \right)}^N} - 1} \right]\)
- Cuối tháng thứ \(N:{T_N} = \dfrac{A}{r}\left[ {{{\left( {1 + r} \right)}^N} - 1} \right]\left( {1 + r} \right)\).
Vậy sau \(N\) tháng, số tiền cả vốn lẫn lãi người đó có được là:
\({T_N} = \dfrac{A}{r}\left[ {{{\left( {1 + r} \right)}^N} - 1} \right]\left( {1 + r} \right)\)
Dạng 4: Bài toán trả góp.
Một người vay ngân hàng số tiền \(T\) đồng, lãi suất định kì là \(r\). Tìm số tiền \(A\) mà người đó phải trả cuối mỗi kì để sau \(N\) kì hạn là hết nợ.
Phương pháp xây dựng công thức:
- Sau 1 tháng, số tiền gốc và lãi là \(T + T.r\), người đó trả \(A\) đồng nên còn:$T + T.r - A = T\left( {1 + r} \right) - A$
- Sau 2 tháng, số tiền còn nợ là: $T\left( {1 + r} \right) - A + \left[ {T\left( {1 + r} \right) - A} \right].r - A = T{\left( {1 + r} \right)^2} - \dfrac{A}{r}\left[ {{{\left( {1 + r} \right)}^2} - 1} \right]$
- Sau 3 tháng, số tiền còn nợ là: $T{\left( {1 + r} \right)^3} - \dfrac{A}{r}\left[ {{{\left( {1 + r} \right)}^3} - 1} \right]$
- Sau \(N\) tháng, số tiền còn nợ là: $T{\left( {1 + r} \right)^N} - \dfrac{A}{r}\left[ {{{\left( {1 + r} \right)}^N} - 1} \right]$.
Vậy sau \(N\) tháng, người đó còn nợ số tiền là:
$T{\left( {1 + r} \right)^N} - \dfrac{A}{r}\left[ {{{\left( {1 + r} \right)}^N} - 1} \right]$

Khitrả hết nợ thì số tiền còn lại bằng \(0\) nên ta có:
$T{\left( {1 + r} \right)^N} - \dfrac{A}{r}\left[ {{{\left( {1 + r} \right)}^N} - 1} \right] = 0 \Leftrightarrow A = \dfrac{{T{{\left( {1 + r} \right)}^N}.r}}{{{{\left( {1 + r} \right)}^N} - 1}}$
- Trả lời câu hỏi 1 trang 57 SGK Giải tích 12
- Trả lời câu hỏi 2 trang 57 SGK Giải tích 12
- Trả lời câu hỏi 3 trang 58 SGK Giải tích 12
- Giải bài 1 trang 60 SGK Giải tích 12
- Giải bài 2 trang 61 SGK Giải tích 12
- Giải bài 3 trang 61 SGK Giải tích 12
- Giải bài 4 trang 61 SGK Giải tích 12
- Giải bài 5 trang 61 SGK Giải tích 12
SGK Toán lớp 12
Giải bài tập toán lớp 12 như là cuốn để học tốt Toán lớp 12. Tổng hợp công thức, lý thuyết, phương pháp giải bài tập giải tích và hình học SGK Toán lớp 12, giúp ôn luyện thi THPT Quốc gia. Giai toan 12 xem mục lục giai toan lop 12 sach giao khoa duoi day
GIẢI TÍCH 12
- CHƯƠNG I. ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ
- CHƯƠNG II. HÀM SỐ LŨY THỪA HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT
- CHƯƠNG III. NGUYÊN HÀM - TÍCH PHÂN VÀ ỨNG DỤNG
- CHƯƠNG IV. SỐ PHỨC
- ÔN TẬP CUỐI NĂM - GIẢI TÍCH 12
HÌNH HỌC 12
- CHƯƠNG I. KHỐI ĐA DIỆN
- CHƯƠNG II. MẶT NÓN, MẶT TRỤ, MẶT CẦU
- CHƯƠNG III. PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN
- ÔN TẬP CUỐI NĂM - HÌNH HỌC 12
CHƯƠNG I. ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ
- Bài 1. Sự đồng biến, nghịch biến của hàm số
- Bài 2. Cực trị của hàm số
- Bài 3. Giá trị lớn nhất và giá trị nhỏ nhất của hàm số
- Bài 4. Đường tiệm cận
- Bài 5. Khảo sát sự biến thiên và vẽ đồ thị của hàm số
- Ôn tập Chương I - Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm sô
CHƯƠNG II. HÀM SỐ LŨY THỪA HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT
- Bài 1. Lũy thừa
- Bài 2. Hàm số lũy thừa
- Bài 3. Lôgarit
- Bài 4. Hàm số mũ, hàm số lôgarit
- Bài 5. Phương trình mũ và phương trình lôgarit
- Bài 6. Bất phương trình mũ và bất phương trình lôgarit
- Ôn tập Chương II - Hàm số lũy thừa, hàm số mũ và hàm số lôgarit
CHƯƠNG III. NGUYÊN HÀM - TÍCH PHÂN VÀ ỨNG DỤNG
- Bài 1. Nguyên hàm
- Bài 2. Tích phân
- Bài 3. Ứng dụng của tích phân trong hình học.
- Ôn tập Chương III - Nguyên hàm - Tích phân và ứng dụng
CHƯƠNG IV. SỐ PHỨC
- Bài 1. Số phức
- Bài 2. Cộng, trừ và nhân số phức
- Bài 3. Phép chia số phức
- Bài 4. Phương trình bậc hai với hệ số thực
- Ôn tập Chương IV - Số phức
CHƯƠNG I. KHỐI ĐA DIỆN
- Bài 1. Khái niệm về khối đa diện
- Bài 2. Khối đa diện lồi và khối đa diện đều
- Bài 3. Khái niệm về thể tích của khối đa diện
- Ôn tập chương I - Khối đa diện
CHƯƠNG II. MẶT NÓN, MẶT TRỤ, MẶT CẦU
CHƯƠNG III. PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN
- Bài 1. Hệ tọa độ trong không gian
- Bài 2. Phương trình mặt phẳng
- Bài 3. Phương trình đường thẳng trong không gian
- Ôn tập chương III - Phương pháp toạ độ trong không gian
Xem Thêm
Lớp 12 | Các môn học Lớp 12 | Giải bài tập, đề kiểm tra, đề thi Lớp 12 chọn lọc
Danh sách các môn học Lớp 12 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2025 ngắn gọn, chi tiết dễ hiểu.
Toán Học
Vật Lý
Hóa Học
Ngữ Văn
- Soạn văn 12
- SBT Ngữ văn lớp 12
- Văn mẫu 12
- Soạn văn 12 chi tiết
- Soạn văn ngắn gọn lớp 12
- Soạn văn 12 siêu ngắn
Sinh Học
GDCD
Tin Học
Tiếng Anh
- SBT Tiếng Anh lớp 12
- Ngữ pháp Tiếng Anh
- SGK Tiếng Anh 12
- SBT Tiếng Anh lớp 12 mới
- SGK Tiếng Anh 12 Mới
Công Nghệ
Lịch Sử & Địa Lý
- Tập bản đồ Địa lí lớp 12
- SBT Địa lí lớp 12
- SGK Địa lí lớp 12
- Tập bản đồ Lịch sử lớp 12
- SBT Lịch sử lớp 12
- SGK Lịch sử lớp 12