Bài 7.1, 7.2, 7.3 phần bài tập bổ sung trang 60 SBT toán 9 tập 2

Giải bài 7.1, 7.2, 7.3 phần bài tập bổ sung trang 60 SBT toán 9 tập 2. Giải các phương trình: x^4-2x^3+3x^2-2x-3=0,...

    Bài 7.1

    Giải các phương trình:

    a) \(\displaystyle {x^4} - 2{x^3} + 3{x^2} - 2x - 3 = 0\)

    b) \(\displaystyle 5 - \sqrt {3 - 2x}  = \left| {2x - 3} \right|\)

    Phương pháp giải:

    - Đặt ẩn phụ và tìm điều kiện cho ẩn.

    - Giải phương trình mới tìm nghiệm và kiểm tra điều kiện.

    - Giải phương trình ẩn \(x\) ứng với từng nghiệm trên và kết luận.

    Lời giải chi tiết:

    a)

    \(\displaystyle \eqalign{
    & {x^4} - 2{x^3} + 3{x^2} - 2x - 3 = 0 \cr 
    & \Leftrightarrow {x^4} - 2{x^3} + {x^2} + 2{x^2} - 2x - 3 = 0 \cr 
    & \Leftrightarrow {x^2}\left( {{x^2} - 2x + 1} \right) + 2x\left( {x - 1} \right) - 3 = 0 \cr 
    & \Leftrightarrow {\left[ {x\left( {x - 1} \right)} \right]^2} + 2.x\left( {x - 1} \right) - 3 = 0 \cr} \)

    Đặt \(\displaystyle x\left( {x - 1} \right) = t\)

    Ta có phương trình: \(\displaystyle {t^2} + 2t - 3 = 0\) có \(\displaystyle 1 + 2 + \left( { - 3} \right) = 0 \) \(\displaystyle  \Rightarrow {t_1} = 1;{t_2} = {{ - 3} \over 1} =  - 3\)

    Với \(t_1=1\) ta có: 

    \(\displaystyle x\left( {x - 1} \right) = 1 \Leftrightarrow {x^2} - x - 1 = 0\)

    \(\displaystyle \eqalign{
    & \Delta = {\left( { - 1} \right)^2} - 4.1.\left( { - 1} \right) = 1 + 4 = 5 > 0 \cr 
    & \sqrt \Delta = \sqrt 5 \cr 
    & {x_1} = {{1 + \sqrt 5 } \over {2.1}} = {{1 + \sqrt 5 } \over 2} \cr 
    & {x_2} = {{1 - \sqrt 5 } \over {2.1}} = {{1 - \sqrt 5 } \over 2} \cr} \)

    Với \(t_2=-3\) ta có: \(\displaystyle x\left( {x - 1} \right) =  - 3 \Leftrightarrow {x^2} - x + 3 = 0\)

    \(\displaystyle \Delta  = {\left( { - 1} \right)^2} - 4.1.3 = 1 - 12\) \( =  - 11 < 0\)

    Phương trình vô nghiệm

    Vậy phương trình có hai nghiệm: 

    \(\displaystyle {x_1} = {{1 + \sqrt 5 } \over 2};{x_2} = {{1 - \sqrt 5 } \over 2}\)

    b) \(\displaystyle 5 - \sqrt {3 - 2x}  = \left| {2x - 3} \right|\).

    Điều kiện \(\displaystyle 3 - 2x \ge 0 \Leftrightarrow x \le {3 \over 2}\)

    \(\displaystyle  \Rightarrow 5 - \sqrt {3 - 2x}  = 3 - 2x\) 

    Đặt \(\displaystyle \sqrt {3 - 2x}  = t \Rightarrow t \ge 0\)

    Ta có phương trình: 

    \(\displaystyle 5 - t = {t^2} \Leftrightarrow {t^2} + t - 5 = 0\)

    \(\displaystyle \eqalign{
    & \Delta = {1^2} - 4.1.\left( { - 5} \right) = 1 + 20 = 21 > 0 \cr 
    & \sqrt \Delta = \sqrt {21} \cr 
    & {t_1} = {{ - 1 + \sqrt {21} } \over {2.1}} = {{\sqrt {21} - 1} \over 2} \cr 
    & {t_2} = {{ - 1 - \sqrt {21} } \over {2.1}} = - {{1 + \sqrt {21} } \over 2} \cr} \)

    \(\displaystyle {t_2} =  - {{1 + \sqrt {21} } \over 2} < 0\) loại

    \(\displaystyle \eqalign{
    & \Rightarrow \sqrt {3 - 2x} = {{\sqrt {21} - 1} \over 2} \cr 
    & \Rightarrow 3 - 2x = {{21 - 2\sqrt {21} + 1} \over 4} \cr 
    & \Leftrightarrow 12 - 8x = 22 - 2\sqrt {21} \cr 
    & \Leftrightarrow 8x = 12 - 22 + 2\sqrt {21} \cr 
    & \Rightarrow x = {{2\left( {\sqrt {21} - 5} \right)} \over 8} = {{\sqrt {21} - 5} \over 4} \cr} \)

    Phương trình có \(1\) nghiệm: 

    \(\displaystyle x = {{\sqrt {21}  - 5} \over 4}\)


    Bài 7.2

    Cho phương trình \(x + 2\sqrt {x - 1}  - {m^2} + 6m - 11 = 0\)

    a) Giải phương trình khi \(m = 2\).

    b) Chứng minh rằng phương trình có nghiệm với mọi giá trị của \(m\).

    Phương pháp giải:

    a) Thay \(m=2\) và giải phương trình bằng phương pháp đặt ẩn phụ.

    b) Đặt ẩn phụ đưa về phương trình bậc hai, chứng minh phương trình này có hai nghiệm phân biệt trái dấu.

    Lời giải chi tiết:

    a) Khi \(m = 2\) ta có phương trình: \(x + 2\sqrt {x - 1}  - 3 = 0\) điều kiện \(x \ge 1\)

    Ta có: \(x + 2\sqrt {x - 1}  - 3 = 0 \Leftrightarrow x - 1 + 2\sqrt {x - 1}  - 2 = 0\)

    Đặt \(\sqrt {x - 1}  = t \Rightarrow t \ge 0\)

    Ta có phương trình: \({t^2} + 2t - 2 = 0\)

    \(\eqalign{
    & \Delta ' = {1^2} - 1.\left( { - 2} \right) = 1 + 2 = 3 > 0 \cr 
    & \sqrt {\Delta '} = \sqrt 3 \cr 
    & {t_1} = {{ - 1 + \sqrt 3 } \over 1} = - 1 + \sqrt 3 \cr 
    & {t_2} = {{ - 1 - \sqrt 3 } \over 1} = - \left( {1 + \sqrt 3 } \right) \cr} \)

    \({t_2} =  - \left( {1 + \sqrt 3 } \right) < 0\) loại

    \(\eqalign{
    & \Rightarrow \sqrt {x - 1} = \sqrt 3 - 1 \cr 
    & \Rightarrow x - 1 = {\left( {\sqrt 3 - 1} \right)^2} \cr 
    & \Leftrightarrow x - 1 = 3 - 2\sqrt 3 + 1 \cr 
    & \Leftrightarrow x = 5 - 2\sqrt 3 \cr} \)

    Vậy phương trình có \(1\) nghiệm \(x = 5 - 2\sqrt 3 \)

    b) \(x + 2\sqrt {x - 1}  - {m^2} + 6m - 11 = 0\).

    Điều kiện \(x \ge 1\)

    \( \Leftrightarrow x - 1 + 2\sqrt {x - 1}  - {m^2} + 6m - 10 = 0\)

    Đặt \(\sqrt {x - 1}  = t \Rightarrow t \ge 0\)

    Ta có phương trình: \({t^2} + 2t - {m^2} + 6m - 10 = 0\)

    \(a = 1 > 0;c =  - {m^2} + 6m - 10 =  - \left( {{m^2} - 6m + 9 + 1} \right) =  - \left[ {{{\left( {m - 3} \right)}^2} + 1} \right] < 0\) nên \(c < 0 \)

    \(⇒ a\) và \(c\) khác dấu, phương trình có hai nghiệm phân biệt \(t_1\) và \(t_2\) trái dấu nhau.

    Giả sử \(t_1>0\) thì \(\sqrt {x - 1}  = t_1\Rightarrow x = {t_1}^2 + 1\ge 1\) (thỏa mãn điều kiện) 

    Vậy phương trình luôn luôn có nghiệm.


    Bài 7.3

    (Đề thi học sinh giỏi Toán Bulgari – Mùa xuân 1997)

    Tìm giá trị của \(\displaystyle m\) để phương trình

    \(\displaystyle \left[ {{x^2} - 2mx - 4\left( {{m^2} + 1} \right)} \right]\left[ {{x^2} - 4x - 2m\left( {{m^2} + 1} \right)} \right] = 0\)

    có đúng ba nghiệm phân biệt.

    Phương pháp giải:

    - Biến đổi phương trình về 

    \(\displaystyle \left[ \begin{array}{l}
    {x^2} - 2mx - 4\left( {{m^2} + 1} \right) = 0\,\,\left( 1 \right)\\
    {x^2} - 4x - 2m\left( {{m^2} + 1} \right) = 0\,\,\left( 2 \right)
    \end{array} \right.\)

    - Nhận xét phương trình (1) luôn có hai nghiệm phân biệt.

    - Phương trình đã cho có \(\displaystyle 3\) nghiệm phân biệt khi và chỉ khi phương trình (2) có một nghiệm duy nhất không trùng với hai nghiệm của (1) hoặc có hai nghiệm phân biệt, trong đó có một nghiệm là nghiệm của (1).

    Lời giải chi tiết:

    Phương trình:

    \(\displaystyle \eqalign{
    & \left[ {{x^2} - 2mx - 4\left( {{m^2} + 1} \right)} \right]\left[ {{x^2} - 4x - 2m\left( {{m^2} + 1} \right)} \right] = 0 \cr 
    & \Leftrightarrow \left[ {\matrix{
    {{x^2} - 2mx - 4\left( {{m^2} + 1} \right) = 0(1)} \cr 
    {{x^2} - 4x - 2m\left( {{m^2} + 1} \right) = 0(2)} \cr} } \right. \cr} \)

    Ta xét phương trình (1): \(\displaystyle {x^2} - 2mx - 4\left( {{m^2} + 1} \right) = 0\)

    \(\displaystyle {\Delta _1}' = {\left( { - m} \right)^2} - 1.\left[ { - 4\left( {{m^2} + 1} \right)} \right] = {m^2} + 4\left( {{m^2} + 1} \right) > 0\) với mọi \(\displaystyle m\)

    Phương trình (1) luôn luôn có hai nghiệm phân biệt

    Ta xét phương trình (2): \(\displaystyle {x^2} - 4x - 2m\left( {{m^2} + 1} \right) = 0\) 

    \(\displaystyle \eqalign{
    & {\Delta _2}' = {\left( { - 2} \right)^2} - 1.\left[ { - 2m\left( {{m^2} + 1} \right)} \right] \cr 
    & = 4 + 2m\left( {{m^2} + 1} \right) \cr 
    & = 2{m^3} + 2m + 4 \cr} \)

    Phương trình (2) có nghiệm khi và chỉ khi \(\displaystyle {\Delta _2}' \ge 0\)

    \(\displaystyle \eqalign{
    & \Rightarrow 2{m^3} + 2m + 4 \ge 0 \cr 
    & \Leftrightarrow {m^3} + m + 2 \ge 0 \cr 
    & \Leftrightarrow {m^3} + {m^2} - {m^2} - m + 2m + 2 \ge 0 \cr 
    & \Leftrightarrow {m^2}\left( {m + 1} \right) - m\left( {m + 1} \right) + 2\left( {m + 1} \right) \ge 0 \cr 
    & \Leftrightarrow \left( {m + 1} \right)\left( {{m^2} - m + 2} \right) \ge 0 \cr} \)

    Vì \(\displaystyle {m^2} - m + 2 = {m^2} - 2.{1 \over 2}m + {1 \over 4} + {7 \over 4} \) \(\displaystyle = {\left( {m - {1 \over 2}} \right)^2} + {7 \over 4} > 0\)

    \(\displaystyle  \Rightarrow m + 1 \ge 0 \Leftrightarrow m \ge  - 1\)

    Vậy với \(\displaystyle m ≥ -1\) thì phương trình (2) có nghiệm.

    Vậy phương trình đã cho có ba nghiệm phân biệt khi và chỉ khi xảy ra một trong hai trường hợp sau:

    Trường hợp 1: Phương trình (2) có \(\displaystyle 1 \) nghiệm kép khác với nghiệm của phương trình (1).

    Ta có: \(\displaystyle {\Delta _2}' = 0\) suy ra \(\displaystyle m = -1\) và nghiệm kép phương trình (2) là: \(\displaystyle x = 2\)

    Khi đó, \(\displaystyle x = 2\) không được là nghiệm của phương trình (1) nên ta có: 

    \(2^2 - 2m.2 - 4\left( {{m^2} + 1} \right) \ne 0\)

    \(\Leftrightarrow \displaystyle 4 - 4m - 4\left( {{m^2} + 1} \right) \ne 0\)

    \(\displaystyle \eqalign{
    & \Leftrightarrow 4 - 4m - 4{m^2} - 4 \ne 0 \cr 
    & \Leftrightarrow - 4m\left( {m + 1} \right) \ne 0 \cr 
    & \Leftrightarrow m\left( {m + 1} \right) \ne 0 \cr} \)

    loại vì \(\displaystyle m = -1\)

    Trường hợp 2: Phương trình (2) có hai nghiệm phân biệt \(\displaystyle x_1\) và \(\displaystyle x_2\) trong đó có \(\displaystyle 1\) nghiệm giả sử là \(\displaystyle x_1\) cũng là nghiệm của phương trình (1).

    Phương trình (2) có \(\displaystyle 2\) nghiệm phân biệt \(\displaystyle  \Leftrightarrow {\Delta _2}' > 0 \Leftrightarrow m >  - 1\)

    Và gọi \(x_1\) là nghiệm chung của hai phương trình (1) và (2), ta có:

    \(\displaystyle \left\{ {\matrix{
    {{x_1}^2 - 2m{x_1} - 4\left( {{m^2} + 1} \right) = 0} \cr 
    {{x_1}^2 - 4{x_1} - 2m\left( {{m^2} + 1} \right) = 0} \cr} } \right.\)

    \(\displaystyle \eqalign{
    & \Rightarrow \left( {4 - 2m} \right){x_1} + 2m\left( {{m^2} + 1} \right) - 4\left( {{m^2} + 1} \right) = 0 \cr 
    & \Leftrightarrow \left( {4 - 2m} \right){x_1} + 2{m^3} + 2m - 4{m^2} - 4 = 0 \cr 
    & \Leftrightarrow \left( {4 - 2m} \right){x_1} + 2\left( {{m^3} - 2{m^2} + m - 2} \right) = 0 \cr 
    & \Leftrightarrow \left( {4 - 2m} \right){x_1} + 2\left[ {{m^2}\left( {m - 2} \right) + \left( {m - 2} \right)} \right] = 0 \cr 
    & \Leftrightarrow \left( {4 - 2m} \right){x_1} + 2\left( {m - 2} \right)\left( {{m^2} + 1} \right) = 0 \cr 
    & \Leftrightarrow 2\left( {2 - m} \right){x_1} + 2\left( {m - 2} \right)\left( {{m^2} + 1} \right) = 0 \cr & \Leftrightarrow 2\left( {2 - m} \right)({x_1} -\left( {{m^2} + 1} \right)) = 0 \cr 
    & \Leftrightarrow {x_1} = {m^2} + 1 (m\ne 2) \cr} \)

    Vì \(\displaystyle x_1\) cũng là nghiệm của phương trình (1) nên thay \(\displaystyle {x_1} = {m^2} + 1\) vào phương trình (1) ta có:

    \(\displaystyle \eqalign{
    & {\left( {{m^2} + 1} \right)^2} - 2m\left( {{m^2} + 1} \right) - 4\left( {{m^2} + 1} \right) = 0 \cr 
    & \Leftrightarrow \left( {{m^2} + 1} \right)\left[ {{m^2} + 1 - 2m - 4} \right] = 0 \cr} \)

    (vì \(\displaystyle {m^2} + 1 > 0\) )

    \(\displaystyle \eqalign{
    & \Leftrightarrow {m^2} + 1 - 2m - 4 = 0 \cr 
    & \Leftrightarrow {m^2} - 2m - 3 = 0 \cr 
    & \Leftrightarrow {m^2} - 3m + m - 3 = 0 \cr 
    & \Leftrightarrow m\left( {m - 3} \right) + \left( {m - 3} \right) = 0 \cr 
    & \Leftrightarrow \left( {m - 3} \right)\left( {m + 1} \right) = 0 \cr 
    & \Leftrightarrow \left[ {\matrix{
    {m = 3} \cr 
    {m = - 1} \cr} } \right. \cr} \)

    Vì \(\displaystyle m > -1\) nên \(\displaystyle m = -1\) loại

    Vậy \(\displaystyle m = 3 \) (thỏa mãn).

    Thay \(\displaystyle m = 3\) vào phương trình (1) và (2) ta có:

    Phương trình (1): \(\displaystyle {x^2} - 6x - 40 = 0\)

    Phương trình (2): \(\displaystyle {x^2} - 4x - 60 = 0\)

    Giải phương trình (1):

    \(\displaystyle \eqalign{
    & {x^2} - 6x - 40 = 0 \cr 
    & \Delta ' = {\left( { - 3} \right)^2} - 1.\left( { - 40} \right) = 9 + 40 = 49 > 0 \cr 
    & \sqrt {\Delta '} = \sqrt {49} = 7 \cr 
    & {x_1} = {{3 + 7} \over 1} = 10 \cr 
    & {x_2} = {{3 - 7} \over 1} = - 4 \cr} \)

    Giải phương trình (2):

    \(\displaystyle \eqalign{
    & {x^2} - 4x - 60 = 0 \cr 
    & \Delta ' = {\left( { - 2} \right)^2} - 1.\left( { - 60} \right) = 4 + 60 = 64 > 0 \cr 
    & \sqrt {\Delta '} = \sqrt {64} = 8 \cr 
    & {x_1} = {{2 + 8} \over 1} = 10 \cr 
    & {x_2} = {{2 - 8} \over 1} = - 6 \cr} \)

    Vậy phương trình đã cho có đúng \(\displaystyle 3\) nghiệm khi \(\displaystyle m = 3\)

    Xemloigiai.com

    SBT Toán lớp 9

    Giải sách bài tập đại số, hình học lớp 9 tập 1, tập 2. Giải tất cả các chương và các trang trong sách bài tập đại số và hình học với lời giải chi tiết, phương pháp giải ngắn nhất

    PHẦN ĐẠI SỐ - SBT TOÁN 9 TẬP 1

    PHẦN HÌNH HỌC - SBT TOÁN 9 TẬP 1

    PHẦN ĐẠI SỐ - SBT TOÁN 9 TẬP 2

    PHẦN HÌNH HỌC - SBT TOÁN 9 TẬP 2

    CHƯƠNG 1: CĂN BẬC HAI. CĂN BẬC BA

    CHƯƠNG 2: HÀM SỐ BẬC NHẤT

    CHƯƠNG 1: HỆ THỨC LƯỢNG TRONG TAM GIÁC VUÔNG

    CHƯƠNG 2: ĐƯỜNG TRÒN

    CHƯƠNG 3: HỆ HAI PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN

    CHƯƠNG 4: HÀM SỐ y=ax^2 (a ≠ 0) . PHƯƠNG TRÌNH BẬC HAI MỘT ẨN

    CHƯƠNG 3: GÓC VỚI ĐƯỜNG TRÒN

    CHƯƠNG 4: HÌNH TRỤ - HÌNH NÓN – HÌNH CẦU

    BÀI TẬP ÔN TẬP CUỐI NĂM

    Lớp 9 | Các môn học Lớp 9 | Giải bài tập, đề kiểm tra, đề thi Lớp 9 chọn lọc

    Danh sách các môn học Lớp 9 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.

    Toán Học

    Vật Lý

    Hóa Học

    Ngữ Văn

    Sinh Học

    GDCD

    Tin Học

    Tiếng Anh

    Công Nghệ

    Lịch Sử & Địa Lý

    Âm Nhạc & Mỹ Thuật