Bài 61 trang 40 SBT toán 8 tập 1

Giải bài 61 trang 40 sách bài tập toán 8. Một phân thức có giá trị bằng 0 khi giá trị của tử thức bằng 0 còn giá trị của mẫu thức khác 0. Tìm các giá trị của x để giá trị của mỗi phân thức sau bằng 0...

    Một phân thức có giá trị bằng \(0\) khi giá trị của tử thức bằng \(0\) còn giá trị của mẫu thức khác \(0\). Ví dụ giá trị của phân thức \(\displaystyle {{{x^2} - 25} \over {x + 1}} = 0\) khi \({x^2} - 25 = 0\) và \(x + 1 \ne 0\) hay \(\left( {x - 5} \right)\left( {x + 5} \right) = 0\) và \(x \ne  - 1\). Vậy giá trị của phân thức này bằng \(0\) khi \(x =  \pm 5\).

    Tìm các giá trị của \(x\) để giá trị của mỗi phân thức sau bằng \(0\):

    LG a

    \(\displaystyle {{98{x^2} - 2} \over {x - 2}}\)

    Phương pháp giải:

    - Xác định giá trị của \(x\) để tử thức của các phân thức bằng \(0\) và mẫu thức khác \(0\).

    Giải chi tiết:

    \(\displaystyle {{98{x^2} - 2} \over {x - 2}}= 0\) khi \(98{x^2} - 2 = 0\) và \(x – 2 ≠ 0\)

    Ta có: \(x – 2 ≠ 0\) \(\Rightarrow x ≠ 2\).

    Và \(98{x^2} - 2 = 0\)

    \( \Rightarrow 2\left( {49{x^2} - 1} \right) = 0\)

    \(\Rightarrow \left( {7x - 1} \right)\left( {7x + 1} \right) = 0  \)

    \( \Rightarrow \left[ \begin{array}{l}7x + 1 = 0\\7x - 1 = 0\end{array} \right.\) \( \Rightarrow \left[ \begin{array}{l}x =  - \dfrac{1}{7}\\x = \dfrac{1}{7}\end{array} \right.\)

    Có \(\displaystyle x = {1 \over 7}\) và \(\displaystyle x =  - {1 \over 7}\) thỏa mãn điều kiện \(x ≠ 2\).

    Vậy \(\displaystyle x = {1 \over 7}\) hoặc \(\displaystyle x =  - {1 \over 7}\) thì phân thức \(\displaystyle {{98{x^2} - 2} \over {x - 2}}\) có giá trị bằng \(0\).


    LG b

    \(\displaystyle {{3x - 2} \over {{x^2} + 2x + 1}}\)

    Phương pháp giải:

    - Xác định giá trị của \(x\) để tử thức của các phân thức bằng \(0\) và mẫu thức khác \(0\).

    Giải chi tiết:

    \(\displaystyle {{3x - 2} \over {{x^2} + 2x + 1}}\)\( \displaystyle = {{3x - 2} \over {{{\left( {x + 1} \right)}^2}}} = 0\) khi \(3x – 2 = 0\) và \({\left( {x + 1} \right)^2} \ne 0\)

    Ta có : \({\left( {x + 1} \right)^2} \ne 0\)\( \Rightarrow x + 1 \ne 0\)\( \Rightarrow x \ne  - 1\)

    Với \(3x - 2 = 0 \)\(\Rightarrow x = \displaystyle {2 \over 3}\)

    Nhận thấy \(x = \displaystyle {2 \over 3}\) thỏa mãn điều kiện \(x ≠ - 1\)

    Vậy \(x = \displaystyle {2 \over 3}\) thì phân thức \(\displaystyle {{3x - 2} \over {{x^2} + 2x + 1}}\) có giá trị bằng \(0\). 

    Xemloigiai.com

    SBT Toán lớp 8

    Giải sách bài tập đại số, hình học lớp 8 tập 1, tập 2. Giải tất cả các chương và các trang trong sách bài tập đại số và hình học với lời giải chi tiết, phương pháp giải ngắn nhất

    PHẦN ĐẠI SỐ - SBT TOÁN 8 TẬP 1

    PHẦN HÌNH HỌC - SBT TOÁN 8 TẬP 1

    PHẦN ĐẠI SỐ - SBT TOÁN 8 TẬP 2

    PHẦN HÌNH HỌC - SBT TOÁN 8 TẬP 2

    CHƯƠNG 1: PHÉP NHÂN VÀ PHÉP CHIA CÁC ĐA THỨC

    CHƯƠNG 2: PHÂN THỨC ĐẠI SỐ

    CHƯƠNG 1: TỨ GIÁC

    CHƯƠNG 2: ĐA GIÁC - DIỆN TÍCH ĐA GIÁC

    CHƯƠNG 3: PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN

    CHƯƠNG 4: BẤT PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN

    CHƯƠNG 3: TAM GIÁC ĐỒNG DẠNG

    CHƯƠNG 4: HÌNH LĂNG TRỤ ĐỨNG. HÌNH CHÓP ĐỀU

    ÔN TẬP CUỐI NĂM

    Lớp 8 | Các môn học Lớp 8 | Giải bài tập, đề kiểm tra, đề thi Lớp 8 chọn lọc

    Danh sách các môn học Lớp 8 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2025 ngắn gọn, chi tiết dễ hiểu.

    Toán Học

    Vật Lý

    Hóa Học

    Ngữ Văn

    Sinh Học

    GDCD

    Tin Học

    Tiếng Anh

    Công Nghệ

    Lịch Sử & Địa Lý

    Âm Nhạc & Mỹ Thuật