Bài 32 trang 10 SBT toán 8 tập 2

Giải bài 31 trang 10 sách bài tập toán 8. Cho phương trình (3x + 2k - 5)(x - 3k + 1) = 0, trong đó k là một số. a) Tìm các giá trị của k sao cho một trong các nghiệm của phương trình là x = 1 ...

    Cho phương trình \(\left( {3x + 2k - 5} \right)\left( {x - 3k + 1} \right) = 0\), trong đó \(k\) là một số.

    LG a

    Tìm các giá trị của \(k\) sao cho một trong các nghiệm của phương trình là \(x = 1\).

    Phương pháp giải:

    - Thay \(x=1\) vào phương trình đã cho rồi giải phương trình ẩn \(k\) để tìm \(k\).

    Lời giải chi tiết:

    Thay \(x = 1\) vào phương trình \(\left( {3x + 2k - 5} \right)\left( {x - 3k + 1} \right) = 0\), ta có:

    \(\eqalign{  & \left( {3.1 + 2k - 5} \right)\left( {1 - 3k + 1} \right) = 0  \cr  &  \Leftrightarrow \left( {2k - 2} \right)\left( {2 - 3k} \right) = 0 \cr} \)

    \( \Leftrightarrow 2k - 2 = 0\) hoặc \(2 - 3k = 0\)

    +) Với  \(2k - 2 = 0 \Leftrightarrow 2k=2 \Leftrightarrow k = 1\)

    +) Với  \(\displaystyle 2 - 3k = 0 \Leftrightarrow 3k=2 \Leftrightarrow k = {2 \over 3}\)

    Vậy với \(k = 1\) hoặc \(k = \dfrac{2}{3}\)  thì phương tình đã cho có nghiệm \(x = 1.\)


    LG b

    Với mỗi giá trị của \(k\) vừa tìm được ở câu a, hãy giải phương trình đã cho.

    Phương pháp giải:

    Thay giá trị của \(k\) tìm được ở câu a) vào phương trình đã cho rồi giải phương trình ẩn \(x\) để tìm \(x\).

    *) Áp dụng phương pháp giải phương trình tích : 

    \( A(x).B(x) = 0 ⇔ A(x) = 0\) hoặc \(B(x) = 0.\)

    Lời giải chi tiết:

    Với \(k = 1\), ta có phương trình :

    \((3x + 2.1 – 5)(x – 3.1 + 1) = 0\)

    \(\Leftrightarrow \left( {3x - 3} \right)\left( {x - 2} \right) = 0\)

    \( \Leftrightarrow 3x - 3 = 0\) hoặc \(x - 2 = 0\)

    +) Với  \(3x - 3 = 0 \Leftrightarrow 3x=3 \Leftrightarrow x = 1\)

    +) Với  \(x - 2 = 0 \Leftrightarrow x = 2\)

     Vậy phương trình có tập nghiệm \( \displaystyle S = \{1;2\}.\)

    Với  \(\displaystyle k = {2 \over 3}\), ta có phương trình :

    \(\displaystyle \Leftrightarrow (3x + 2. {2 \over 3}– 5)(x – 3.{2 \over 3} + 1) = 0\)

    \(\displaystyle \left( {3x - {{11} \over 3}} \right)\left( {x - 1} \right) = 0\)

    \( \displaystyle \Leftrightarrow 3x - {{11} \over 3} = 0\) hoặc \(x - 1 = 0\)

    +) Với  \(\displaystyle 3x - {{11} \over 3} = 0 \Leftrightarrow 3x={{11} \over 3}\)\(\displaystyle \Leftrightarrow x = {{11} \over 9}\)

    +) Với  \(x - 1 = 0 \Leftrightarrow x = 1\) 

     Vậy phương trình có tập nghiệm \( \displaystyle S = \left\{ \dfrac{11}{9};\,1 \right \}.\) 

    Xemloigiai.com

    SBT Toán lớp 8

    Giải sách bài tập đại số, hình học lớp 8 tập 1, tập 2. Giải tất cả các chương và các trang trong sách bài tập đại số và hình học với lời giải chi tiết, phương pháp giải ngắn nhất

    PHẦN ĐẠI SỐ - SBT TOÁN 8 TẬP 1

    PHẦN HÌNH HỌC - SBT TOÁN 8 TẬP 1

    PHẦN ĐẠI SỐ - SBT TOÁN 8 TẬP 2

    PHẦN HÌNH HỌC - SBT TOÁN 8 TẬP 2

    CHƯƠNG 1: PHÉP NHÂN VÀ PHÉP CHIA CÁC ĐA THỨC

    CHƯƠNG 2: PHÂN THỨC ĐẠI SỐ

    CHƯƠNG 1: TỨ GIÁC

    CHƯƠNG 2: ĐA GIÁC - DIỆN TÍCH ĐA GIÁC

    CHƯƠNG 3: PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN

    CHƯƠNG 4: BẤT PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN

    CHƯƠNG 3: TAM GIÁC ĐỒNG DẠNG

    CHƯƠNG 4: HÌNH LĂNG TRỤ ĐỨNG. HÌNH CHÓP ĐỀU

    ÔN TẬP CUỐI NĂM

    Lớp 8 | Các môn học Lớp 8 | Giải bài tập, đề kiểm tra, đề thi Lớp 8 chọn lọc

    Danh sách các môn học Lớp 8 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2025 ngắn gọn, chi tiết dễ hiểu.

    Toán Học

    Vật Lý

    Hóa Học

    Ngữ Văn

    Sinh Học

    GDCD

    Tin Học

    Tiếng Anh

    Công Nghệ

    Lịch Sử & Địa Lý

    Âm Nhạc & Mỹ Thuật