Bài 2.13 trang 60 SBT hình học 12

Giải bài 2.13 trang 60 sách bài tập hình học 12. Trong mặt phẳng cho hình vuông ABCD có cạnh bằng a. Trên đường thẳng Ax vuông góc với ta lấy một điểm S tùy ý, dựng mặt phẳng đi qua A và vuông góc với đường thẳng SC. Mặt phẳng cắt SB, SC, SD lần lượt tại B’, C’, D’.

    Đề bài

    Trong mặt phẳng \((\alpha )\) cho hình vuông ABCD có cạnh bằng a. Trên đường thẳng Ax vuông góc với \((\alpha )\) ta lấy một điểm S tùy ý, dựng mặt phẳng \((\beta )\) đi qua A và vuông góc với đường thẳng SC. Mặt phẳng \((\beta )\) cắt SB, SC, SD lần lượt tại B’, C’, D’.

    a) Chứng minh rằng các điểm A, B, C, D, B’, C’, D’ luôn luôn thuộc một mặt cầu cố định.

    b) Tính diện tích của mặt cầu đó và tính thể tích khối cầu được tạo thành.

    Phương pháp giải - Xem chi tiết

    a) Chứng mình các điểm B, D, B', C', D' cùng nhìn AC một góc \(90^0\).

    b) Công thức tính diện tích mặt cầu: \(S = 4\pi {R^2}\).

    Công thức tính thể tích khối cầu: \(V = \dfrac{4}{3}\pi {R^3}\).

    Lời giải chi tiết

    a) Ta có \(\displaystyle \left\{ {\matrix{{BC \bot AB} \cr {BC \bot SA} \cr} } \right.\Rightarrow BC \bot (SAB) \) \(\displaystyle \Rightarrow BC \bot AB'\)

    Ta lại có \(\displaystyle AB' \bot SC\) nên suy ra \(\displaystyle AB' \bot (SBC)\). Do đó \(\displaystyle AB' \bot B'C\)

    Chứng minh tương tự ta có \(\displaystyle AD' \bot D'C\).

    Vậy \(\displaystyle \widehat {ABC} = \widehat {AB'C} = \widehat {AC'C} \) \(\displaystyle = \widehat {AD'C} = \widehat {ADC} = {90^0}\)

    Từ đó suy ra 7 điểm A, B, C, D, B’, C’, D’ cùng nằm trên mặt cầu đường kính là AC.

    b) Gọi r là bán kính mặt cầu, ta có \(\displaystyle r = {{AC} \over 2} = {{a\sqrt 2 } \over 2}\)

    Vậy \(\displaystyle S = 4\pi {r^2} = 4\pi {({{a\sqrt 2 } \over 2})^2} = 2\pi {a^2}\) và \(\displaystyle V = {4 \over 3}\pi {r^3}\) \(\displaystyle = {4 \over 3}\pi {({{a\sqrt 2 } \over 2})^3} \) \(\displaystyle = {1 \over 3}\pi {a^3}\sqrt 2 \)

    Xemloigiai.com

    SBT Toán lớp 12

    Giải sách bài tập toán hình học và giải tích lớp 12. Giải chi tiết tất cả câu hỏi trong các chương và bài chi tiết trong SBT hình học và giải tích toán 12 cơ bản với cách giải nhanh và ngắn gọn nhất

    GIẢI TÍCH SBT 12

    HÌNH HỌC SBT 12

    Chương 1: Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số

    Chương 2: Hàm số lũy thừa. Hàm số mũ và hàm số Logarit

    Chương 3: Nguyên hàm, tích phân và ứng dụng

    Chương 4: Số phức

    Chương 1: Khối đa diện

    Chương 2: Mặt nón, mặt trụ, mặt cầu

    Chương 3: Phương pháp tọa độ trong không gian

    Ôn tập cuối năm Hình học 12