Bài 20 trang 196 SGK Đại số và Giải tích 12 Nâng cao

Hỏi công thức Vi-ét về phương trình bậc hai với hệ số thực có còn đúng cho phương trình bậc hai với hệ số phức không? Vì sao?

    LG a

    Hỏi công thức Vi-ét về phương trình bậc hai với hệ số thực có còn đúng cho phương trình bậc hai với hệ số phức không? Vì sao?

    Phương pháp giải:

    Tính tổng, tích các nghiệm dựa vào công thức nghiệm \(z _{1,2}= {{ - B \pm \delta } \over {2A}}\)

    Lời giải chi tiết:

    Công thức nghiệm của phương trình bậc hai \(A{z^2} + Bz + C = 0\) là

    \(z_{1,2}  = {{ - B \pm \delta } \over {2A}}\left( {{\delta ^2} = {B^2} - 4AC} \right)\)

    Do đó:

    \({z_1} + {z_2} = \dfrac{{ - B + \delta }}{{2A}} + \dfrac{{ - B - \delta }}{{2A}} \) \(= \dfrac{{ - 2B}}{{2A}} =  - \dfrac{B}{A}\)

    \({z_1}{z_2} = \dfrac{{ - B + \delta }}{{2A}}.\dfrac{{ - B - \delta }}{{2A}} \) \(= \dfrac{{{{\left( { - B} \right)}^2} - {\delta ^2}}}{{4{A^2}}} \) \(= \dfrac{{{B^2} - \left( {{B^2} - 4AC} \right)}}{{4{A^2}}} \) \(= \dfrac{{4AC}}{{4{A^2}}} = \dfrac{C}{A}\)

    Do đó 

    \(\left\{ \begin{array}{l}
    {z_1} + {z_2} = - \dfrac{B}{A}\\
    {z_1}{z_2} = \dfrac{C}{A}
    \end{array} \right.\)

    Vậy công thức Viét vẫn còn đúng.


    LG b

    Tìm hai số phức, biết tổng của chúng bằng \(4 – i\) và tích của chúng bằng \(5(1 – i)\)

    Phương pháp giải:

    Giả sử \({z_1} + {z_2} = \alpha \); \({z_1}{z_2} = \beta \).

    Chứng minh \({z_1},{z_2}\) là hai nghiệm phương trình: \( {z^2} - \alpha z + \beta  = 0\)

    Lời giải chi tiết:

    Giả sử \({z_1} + {z_2} = \alpha \); \({z_1}{z_2} = \beta \)

    \({z_1},{z_2}\) là hai nghiệm phương trình:

    \(\left( {z - {z_1}} \right)\left( {z - {z_2}} \right) = 0\) \(\Leftrightarrow {z^2} - \left( {{z_1} + {z_2}} \right)z + {z_1}{z_2} = 0\) \( \Leftrightarrow {z^2} - \alpha z + \beta  = 0\)

    Theo đề bài \({z_1} + {z_2} = 4 - i\); \({z_1}{z_2} = 5\left( {1 - i} \right)\,\,\)

    nên \({z_1},{z_2}\) là hai nghiệm phương trình

    \({z^2} - \left( {4 - i} \right)z + 5\left( {1 - i} \right) = 0\) (*)

    \(\Delta  = {\left( {4 - i} \right)^2} - 20\left( {1 - i} \right) \) \(= 16 - 1 - 8i - 20 + 20i =  - 5 + 12i\)

    Giả sử \({\left( {x + yi} \right)^2} =  - 5 + 12i \) \(\Leftrightarrow \left\{ \matrix{  {x^2} - {y^2} =  - 5 \hfill \cr  2xy = 12 \hfill \cr}  \right.\)

    \( \Leftrightarrow \left\{ \matrix{  {x^2} - {{36} \over {{x^2}}} =  - 5 \hfill \cr  y = {6 \over x} \hfill \cr}  \right. \) \(\Leftrightarrow \left\{ \matrix{  {x^4} + 5{x^2} - 36 = 0 \hfill \cr  y = {6 \over x} \hfill \cr}  \right. \)

    \(\Leftrightarrow \left\{ \matrix{  x = 2 \hfill \cr  y = 3 \hfill \cr}  \right.\,\text{ hoặc }\left\{ \matrix{  x =  - 2 \hfill \cr  y =  - 3 \hfill \cr}  \right.\)

    Vậy \(\Delta\) có hai căn bậc hai là \( \pm \left( {2 + 3i} \right)\).

    Phương trình bậc hai (*) có hai nghiệm:

    \({z_1} = {1 \over 2}\left[ {4 - i + \left( {2 + 3i} \right)} \right] = 3 + i\)

    \({z_2} = {1 \over 2}\left[ {4 - i - \left( {2 + 3i} \right)} \right] = 1 - 2i\)


    LG c

    Có phải mọi phương trình bậc hai \({z^2} + Bz + C = 0\) (\(B, C\) là hai số phức) nhận hai nghiệm là hai số phức liên hợp không thực phải có các hệ số \(B, C\) là hai số thực? Vì sao? Điều ngược lại có đúng không?

    Lời giải chi tiết:

    Nếu phương trình \({z^2} + Bz + C = 0\) có hai nghiệm \({z_1},{z_2}\) là hai số phức liên hợp, \({z_2} = \overline {{z_1}} \), thì theo công thức Vi-ét:

    \(\left\{ \begin{array}{l}{z_1} + {z_2} = - B\\{z_1}{z_2} = C\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{z_1} + \overline {{z_1}} = - B\\{z_1}.\overline {{z_1}} = C\end{array} \right.\)

    Mà \({z_1} = x + yi \Rightarrow \overline {{z_1}}  = x - yi\)

    \(\begin{array}{l} \Rightarrow {z_1} + \overline {{z_1}}  = 2x \in \mathbb{R}\\{z_1}.\overline {{z_1}}  = {x^2} + {y^2} \in \mathbb{R}\end{array}\)

    Do đó B, C thực.

    Điều ngược lại không đúng vì nếu \(B, C\) thực thì \(\Delta  = {B^2} - 4AC > 0\) hai nghiệm là số thực phân biệt, chúng không phải là liên hợp với nhau. ( Khi \(\Delta  \le 0\) thì phương trình mới có hai nghiệm là hai số phức liên hợp).

    Ví dụ: Phương trình \(z^2+2z-3=0\) có nghiệm là z = 1; z =-3.

    Xemloigiai.com

    SGK Toán 12 Nâng cao

    Giải bài tập toán lớp 12 Nâng cao như là cuốn để học tốt Toán lớp 12 Nâng cao. Tổng hợp công thức, lý thuyết, phương pháp giải bài tập giải tích và hình học SGK Toán lớp 12 Nâng cao, giúp ôn luyện thi THPT Quốc gia

    GIẢI TÍCH 12 NÂNG CAO

    HÌNH HỌC 12 NÂNG CAO

    CHƯƠNG I. ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ

    CHƯƠNG II. HÀM SỐ LŨY THỪA, HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT

    CHƯƠNG III. NGUYÊN HÀM, TÍCH PHÂN VÀ ỨNG DỤNG

    CHƯƠNG IV. SỐ PHỨC

    ÔN TẬP CUỐI NĂM ĐẠI SỐ VÀ GIẢI TÍCH - TOÁN 12 NÂNG CAO

    CHƯƠNG I. KHỐI ĐA DIỆN VÀ THỂ TÍCH CỦA CHÚNG

    CHƯƠNG II. MẶT CẦU, MẶT TRỤ, MẶT NÓN

    CHƯƠNG III. PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN

    ÔN TẬP CUỐI NĂM HÌNH HỌC - TOÁN 12 NÂNG CAO