Bài 20 trang 118 Sách bài tập hình học lớp 12 nâng cao

a)Tìm vec tơ đơn vị vuông góc với trục Ox

    LG a

    Tìm vec tơ đơn vị vuông góc với trục Ox và vuông góc với vec tơ \(\overrightarrow a (3;6;8).\)

    Lời giải chi tiết:

    Giả sử \(\overrightarrow u (x;y;z)\) là vec tơ đơn vị phải tìm .Từ giả thiết ta có hệ :

    \(\left\{ \matrix{  \left| {\overrightarrow u } \right| = 1 \hfill \cr  \overrightarrow u .\overrightarrow i  = 0 \hfill \cr  \overrightarrow u .\overrightarrow a  = 0 \hfill \cr}  \right. \Rightarrow \left\{ \matrix{  {x^2} + {y^2} + {z^2} = 1 \hfill \cr  x = 0 \hfill \cr  3x + 6y + 8z = 0 \hfill \cr}  \right.\)

    \( \Leftrightarrow x = 0,y =  - {4 \over 5},z = {3 \over 5}\) hoặc \(x = 0,y = {4 \over 5},z =  - {3 \over 5}.\)

    Có hai vec tơ \(\overrightarrow u \) với tọa độ là \(\left( {0; - {4 \over 5};{3 \over 5}} \right),\left( {0;{4 \over 5}; - {3 \over 5}} \right).\)


    LG b

    Cho vec tơ \(\overrightarrow a (1; - 2;3).\) Tìm tọa độ vec tơ \(\overrightarrow b \) cùng phương với \(\overrightarrow a ,\) biết \(\overrightarrow b \) tạo với trục Oy một góc nhọn và \(\left| {\overrightarrow b } \right| = \sqrt {14} .\)

    Lời giải chi tiết:

    Giả sử \(\overrightarrow b (x;y;z)\) là vec tơ phải tìm. Từ giả thiết ta có hệ

    \(\eqalign{  & \left\{ \matrix{  \overrightarrow b  = k\overrightarrow a  \hfill \cr  \left| {\overrightarrow b } \right| = \sqrt {14}  \hfill \cr  \overrightarrow b .\overrightarrow j  > 0 \hfill \cr}  \right. \Leftrightarrow \left\{ \matrix{  x = k \hfill \cr  y =  - 2k \hfill \cr  z = 3k \hfill \cr  {x^2} + {y^2} + {z^2} = 14,y > 0. \hfill \cr}  \right.  \cr  &  \cr} \)

    Vì y = -2k > 0 nên k < 0.

    Ta có :

    \(\left\{ \matrix{  {k^2} + 4{k^2} + 9{k^2} = 14 \hfill \cr  k < 0 \hfill \cr}  \right. \Rightarrow k =  - 1.\)

    Vậy \(\overrightarrow b  = ( - 1;2; - 3).\)


    LG c

    Vectơ\(\overrightarrow u \) có độ dài bằng 2,tạo với vec tơ \(\overrightarrow a (1;1;1)\) góc 300, tạo với vectơ \(\overrightarrow b (1;1;0)\) góc 450. Tìm tọa độ của vec tơ \(\overrightarrow u .\)

    Lời giải chi tiết:

    \(\overrightarrow u  = \left( {{{2 - \sqrt 2 } \over 2};{{2 + \sqrt 2 } \over 2};1} \right)\) hoặc \(\left( {{{2 + \sqrt 2 } \over 2};{{2 - \sqrt 2 } \over 2};1} \right)\).


    LG d

    Vectơ \(\overrightarrow u \) vuông góc với hai vec tơ \(\overrightarrow a (1;1;1)\) và \(\overrightarrow b (1; - 1;3),\overrightarrow u \) tạo với trục Oz một góc tù và \(\left| {\overrightarrow u } \right| = 3.\) Tìm tọa độ của vec tơ \(\overrightarrow u .\)

    Lời giải chi tiết:

    Giả sử \(\overrightarrow u  = (x;y;z)\) là vec tơ phải tìm . Từ giả thiết của bài toán ta có hệ :

    \(\left\{ \matrix{  \overrightarrow u .\overrightarrow a  = 0 \hfill \cr  \overrightarrow u .\overrightarrow b  = 0 \hfill \cr  \left| {\overrightarrow u } \right| = 3 \hfill \cr  \overrightarrow u .\overrightarrow k  < 0 \hfill \cr}  \right. \Leftrightarrow \left\{ \matrix{  x + y + z = 0 \hfill \cr  x - y + 3z = 0 \hfill \cr  {x^2} + {y^2} + {z^2} = 9 \hfill \cr  z < 0. \hfill \cr}  \right.\)

    Từ hai phương trình đầu của hệ rút ra x = -2z, y = z, thế vào phương trình thứ ba của hệ, ta có : \(6{z^2} = 9\).

    Vì z < 0 nên \(z =  - \sqrt {{3 \over 2}} \), suy ra \(x = 2\sqrt {{3 \over 2}} ,\,\,y =  - \sqrt {{3 \over 2}} \)

    Vectơ \(\overrightarrow u \) phải tìm là \(\overrightarrow u  = \left( {2\sqrt {{3 \over 2}} ; - \sqrt {{3 \over 2}} ; - \sqrt {{3 \over 2}} } \right).\)

    Xemloigiai.com

    SBT Toán lớp 12 Nâng cao

    Giải sách bài tập toán hình học và giải tích lớp 12. Giải chi tiết tất cả câu hỏi trong các chương và bài chi tiết trong SBT hình học và đại số toán 12 nâng cao với cách giải nhanh và ngắn gọn nhất

    GIẢI TÍCH SBT 12 NÂNG CAO

    HÌNH HỌC SBT 12 NÂNG CAO

    CHƯƠNG 1: ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ HÀM SỐ

    CHƯƠNG II: HÀM SỐ LŨY THỪA, HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT

    CHƯƠNG III: NGUYÊN HÀM, PHÂN TÍCH VÀ ỨNG DỤNG

    CHƯƠNG IV: SỐ PHỨC

    CHƯƠNG 1: KHỐI ĐA DIỆN VÀ THỂ TÍCH CỦA CHÚNG

    CHƯƠNG 2: MẶT CẦU, MẶT TRỤ, MẶT NÓN

    CHƯƠNG III: PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN