Bài 1.14 trang 18 SBT hình học 12

Giải bài 1.14 trang 18 sách bài tập hình học 12. Cho hình hộp chữ nhật ABCD.A’B’C’D’ có AB = a, BC = 2a, AA’ = a. Lấy điểm M trên cạnh AD sao cho AM = 3MD.

    Cho hình hộp chữ nhật \(ABCD.A'B'C'D'\) có \(AB = a,BC = 2a,AA' = a\). Lấy điểm \(M\) trên cạnh \(AD\) sao cho \(AM = 3MD\).

    LG a

    Tính thể tích khối chóp \(M.AB'C\)

    Phương pháp giải:

    - Đổi vị trí đỉnh và đáy của khối chóp, đưa về khối chóp có chiều cao và đáy dễ tính toán.

    - Tính thể tích theo công thức \(V = \dfrac{1}{3}Sh\).

    Giải chi tiết:

    Ta có: \({V_{M.AB'C}} = {V_{B'.ACM}}\).

    \({S_{AMC}} = \dfrac{3}{4}{S_{ADC}} = \dfrac{3}{4}.\dfrac{1}{2}.2{a^2} = \dfrac{{3{a^2}}}{4}\)

    Do đó \({V_{M.AB'C}} = {V_{B'.ACM}} = \dfrac{1}{3}B'B.{S_{AMC}}\)\( = \dfrac{1}{3}.\dfrac{{3{a^2}}}{4}.a = \dfrac{{{a^3}}}{4}\)


    LG b

    Tính khoảng cách từ \(M\) đến mặt phẳng \(\left( {AB'C} \right)\).

    Phương pháp giải:

    - Tính diện tích tam giác \(AB'C\).

    - Dựa vào thể tích và diện tích của khối chóp \(M.AB'C\) suy ra khoảng cách theo công thức \(h = \dfrac{{3V}}{S}\).

    Giải chi tiết:

    Gọi \(h\) là khoảng cách từ \(M\) đến mặt phẳng \(\left( {AB'C} \right)\)

    Khi đó \({V_{M.AB'C}} = \dfrac{1}{3}{S_{AB'C}}.h = \dfrac{{{a^3}}}{4}\)

    Vì \(A{C^2} = {\rm{ }}B'{C^2} = 5{a^2}\) nên tam giác \(ACB'\) cân tại \(C\). Do đó, đường trung tuyến \(CI\) của tam giác \(ACB'\) cũng là đường cao.

    Ta có: \(C{I^2} = {\rm{ }}C{A^2}-{\rm{ }}A{I^2}\)\( = {\rm{ }}5{a^2} - {\left( {\dfrac{{a\sqrt 2 }}{2}} \right)^2}\) \( = 5{a^2} - \dfrac{{{a^2}}}{2} = \dfrac{{9{a^2}}}{2}\)

    Do đó \(CI = \dfrac{{3a}}{{\sqrt 2 }}\)\( \Rightarrow {S_{AB'C}} = \dfrac{1}{2}.\dfrac{{3a}}{{\sqrt 2 }}.a\sqrt 2  = \dfrac{{3{a^2}}}{2}\)

    \( \Rightarrow h = \dfrac{{3V}}{S} = \dfrac{{3{a^3}}}{4}:\dfrac{{3{a^2}}}{2} = \dfrac{a}{2}\).

    Xemloigiai.com

    SBT Toán lớp 12

    Giải sách bài tập toán hình học và giải tích lớp 12. Giải chi tiết tất cả câu hỏi trong các chương và bài chi tiết trong SBT hình học và giải tích toán 12 cơ bản với cách giải nhanh và ngắn gọn nhất

    GIẢI TÍCH SBT 12

    HÌNH HỌC SBT 12

    Chương 1: Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số

    Chương 2: Hàm số lũy thừa. Hàm số mũ và hàm số Logarit

    Chương 3: Nguyên hàm, tích phân và ứng dụng

    Chương 4: Số phức

    Chương 1: Khối đa diện

    Chương 2: Mặt nón, mặt trụ, mặt cầu

    Chương 3: Phương pháp tọa độ trong không gian

    Ôn tập cuối năm Hình học 12