Bài 1.13 trang 18 SBT hình học 12

Giải bài 1.13 trang 18 sách bài tập hình học 12. Chứng minh rằng tổng các khoảng cách từ một điểm bất kì trong một tứ diện đều đến các mặt phẳng của nó là một số không đổi.

    Đề bài

    Chứng minh rằng tổng các khoảng cách từ một điểm bất kì trong một tứ diện đều đến các mặt của nó là một số không đổi.

    Phương pháp giải - Xem chi tiết

    - Tính thể tích mỗi khối chóp đỉnh \(M\) và đáy là các tam giác đều.

    - Tính tổng thể tích và suy ra tổng khoảng cách từ \(M\) đến các mặt bên.

    Lời giải chi tiết

    Xét tứ diện đều \(ABCD\), \(M\) là một điểm trong của nó.

    Gọi \(V\) là thể tích, \(S\) là diện tích mỗi mặt của tứ diện đều \(ABCD\), \({h_A},{h_B},{h_C},{h_D}\) lần lượt là khoảng cách từ \(M\) đến các mặt \(\left( {BCD} \right),\left( {CDA} \right),\left( {DAB} \right),\left( {ABC} \right)\).

    Ta có: \({V_{M.BCD}} = \dfrac{1}{3}S{h_A},{V_{M.CDA}} = \dfrac{1}{3}S{h_B},\) \({V_{M.DAB}} = \dfrac{1}{3}S{h_C},{V_{M.ABC}} = \dfrac{1}{3}S{h_D}\)

    Khi đó ta có \(V = {V_{MBCD}} + {V_{MCDA}} + {V_{MDAB}} + {V_{MABC}}\)\( = \dfrac{1}{3}S\left( {{h_A} + {h_B} + {h_C} + {h_D}} \right)\)

    \( \Rightarrow {h_A} + {h_B} + {h_C} + {h_D} = \dfrac{{3V}}{S}\).

    Mà \(V,S\) là các số không đổi nên \({h_A} + {h_B} + {h_C} + {h_D}\) không đổi. (đpcm)

    Xemloigiai.com

    SBT Toán lớp 12

    Giải sách bài tập toán hình học và giải tích lớp 12. Giải chi tiết tất cả câu hỏi trong các chương và bài chi tiết trong SBT hình học và giải tích toán 12 cơ bản với cách giải nhanh và ngắn gọn nhất

    GIẢI TÍCH SBT 12

    HÌNH HỌC SBT 12

    Chương 1: Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số

    Chương 2: Hàm số lũy thừa. Hàm số mũ và hàm số Logarit

    Chương 3: Nguyên hàm, tích phân và ứng dụng

    Chương 4: Số phức

    Chương 1: Khối đa diện

    Chương 2: Mặt nón, mặt trụ, mặt cầu

    Chương 3: Phương pháp tọa độ trong không gian

    Ôn tập cuối năm Hình học 12