Bài 1.12 trang 18 SBT hình học 12

Giải bài 1.12 trang 18 sách bài tập hình học 12. Cho hình chóp tam giác S.ABC có đáy là tam giác vuông ở B. Cạnh SA vuông góc với đáy. Từ A kẻ các đoạn thẳng AD vuông góc với SB và AE vuông góc với SC. Biết rằng AB = a, BC = b, SA = c.

    Cho hình chóp tam giác \(S.ABC\) có đáy là tam giác vuông ở \(B\). Cạnh \(SA\) vuông góc với đáy. Từ \(A\) kẻ các đoạn thẳng \(AD\) vuông góc với \(SB\) và \(AE\) vuông góc với \(SC\). Biết rằng \(AB = a,BC = b,SA = c\).

    LG a

    Hãy tính thể tích khối chóp \(S.ADE\)

    Phương pháp giải:

    - Chứng minh \(SE \bot \left( {ADE} \right)\).

    - Tính diện tích tam giác \(ADE\) và chiều cao \(SE\).

    - Tính thể tích khối chóp theo công thức \(V = \dfrac{1}{3}Sh\).

    Giải chi tiết:

    Ta có \(\left\{ {\begin{array}{*{20}{c}}{BC \bot SA}\\{BC \bot AB}\end{array}} \right. \Rightarrow BC \bot (SAB)\)

    Vì \(AD \subset (SAB)\) nên \(AD \bot BC\)

    Mặt khác \(AD \bot SB\) nên \(AD \bot (SBC)\)

    Từ đó suy ra \(AD \bot SC\)

    \(\left\{ {\begin{array}{*{20}{c}}{SC \bot AE}\\{SC \bot AD}\end{array}} \right.\)\( \Rightarrow SC \bot (ADE) \Rightarrow SC \bot DE\) hay \(SE \bot (ADE)\).

    Trong tam giác vuông \(SAB\) ta có: \(SA.AB = AD.SB\)\( \Rightarrow AD = \dfrac{{AB.SA}}{{SB}} = \dfrac{{ac}}{{\sqrt {{a^2} + {c^2}} }}\)

    Tương tự, trong tam giác vuông \(SAC\) ta có: \(AE = \dfrac{{SA.AC}}{{SC}} = \dfrac{{c\sqrt {{a^2} + {b^2}} }}{{\sqrt {{a^2} + {b^2} + {c^2}} }}\)

    Do \(AD \bot (SBC)\)  nên \(AD \bot DE\). Từ đó suy ra:

    \(DE = \sqrt {A{E^2} - A{D^2}} \)\( = \sqrt {\dfrac{{{c^2}({a^2} + {b^2})}}{{{a^2} + {b^2} + {c^2}}} - \dfrac{{{a^2}{c^2}}}{{{a^2} + {c^2}}}} \) \( = \dfrac{{{c^2}b}}{{\sqrt {({a^2} + {b^2} + {c^2})({a^2} + {c^2})} }}\)

    \(SE = \sqrt {S{A^2} - A{E^2}} \)\( = \sqrt {{c^2} - \dfrac{{{c^2}({a^2} + {b^2})}}{{{a^2} + {b^2} + {c^2}}}} \) \( = \dfrac{{{c^2}}}{{\sqrt {{a^2} + {b^2} + {c^2}} }}\)

    Vậy \({V_{S.ADE}} = \dfrac{1}{3}.\dfrac{1}{2}AD.DE.SE\)\( = \dfrac{1}{6}\dfrac{{ac}}{{\sqrt {{a^2} + {c^2}} }}.\dfrac{{{c^2}b}}{{\sqrt {({a^2} + {b^2} + {c^2})({a^2} + {c^2})} }}.\dfrac{{{c^2}}}{{\sqrt {{a^2} + {b^2} + {c^2}} }}\)

    \( = \dfrac{{ab{c^5}}}{{6({a^2} + {b^2} + {c^2})({a^2} + {c^2})}}\)


    LG b

    Tính khoảng cách từ \(E\) đến mặt phẳng \(\left( {SAB} \right)\).

    Phương pháp giải:

    - Tính diện tích tam giác \(SAD\).

    - Sử dụng công thức \({V_{SADE}} = \dfrac{1}{3}d.{S_{SAD}}\) và kết quả câu a để suy ra \(d\).

    Giải chi tiết:

    Gọi \(d\) là khoảng cách từ \(E\;\) đến mặt phẳng \(\left( {SAB} \right)\)

    Ta có: \(SD = \sqrt {S{A^2} - A{D^2}} \)\( = \sqrt {{c^2} - \dfrac{{{a^2}{c^2}}}{{{a^2} + {c^2}}}}  = \dfrac{{{c^2}}}{{\sqrt {{a^2} + {c^2}} }}\)

    \({V_{S.ADE}} = {V_{E.SAD}}\)\( = \dfrac{1}{3}.\dfrac{1}{2}SD.AD.d\) \( = \dfrac{1}{6}.\dfrac{{{c^2}}}{{\sqrt {{a^2} + {c^2}} }}.\dfrac{{ac}}{{\sqrt {{a^2} + {c^2}} }}.d\) \( = \dfrac{1}{6}.\dfrac{{a{c^3}}}{{{a^2} + {c^2}}}.d\)

    Kết hợp với kết quả trong câu a ta suy ra \(d = \dfrac{{b{c^2}}}{{{a^2} + {b^2} + {c^2}}}\).

    Xemloigiai.com

    SBT Toán lớp 12

    Giải sách bài tập toán hình học và giải tích lớp 12. Giải chi tiết tất cả câu hỏi trong các chương và bài chi tiết trong SBT hình học và giải tích toán 12 cơ bản với cách giải nhanh và ngắn gọn nhất

    GIẢI TÍCH SBT 12

    HÌNH HỌC SBT 12

    Chương 1: Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số

    Chương 2: Hàm số lũy thừa. Hàm số mũ và hàm số Logarit

    Chương 3: Nguyên hàm, tích phân và ứng dụng

    Chương 4: Số phức

    Chương 1: Khối đa diện

    Chương 2: Mặt nón, mặt trụ, mặt cầu

    Chương 3: Phương pháp tọa độ trong không gian

    Ôn tập cuối năm Hình học 12