Bài 2 trang 63 SGK Hình học 12 Nâng cao

Xác định tâm và bán kính của mặt cầu ngoại tiếp hình chóp S.ABC

    Đề bài

    Xác định tâm và bán kính của mặt cầu ngoại tiếp hình chóp \(S.ABC\), biết \(SA = SB = SC = a\), \(\widehat {ASB} = {60^0},\widehat {BSC} = {90^0},\widehat {CSA} = {120^0}\)

    Phương pháp giải - Xem chi tiết

    - Chứng minh tam giác ABC vuông tại B.

    - Từ đó suy ra SH là trục đường tròn ngoại tiếp tam giác ABC (đường thẳng vuông góc với mặt phẳng (ABC) tại tâm đường tròn ngoại tiếp tam giác)

    - Sử dụng tính chất: "Mọi điểm nằm trên trục đường tròn ngoại tiếp tam giác ABC thì cách đều ba điểm A, B, C" để dựng tâm mặt cầu.

    Lời giải chi tiết

    Áp dụng định lí Cosin trong tam giác \(SAB, SAC\) ta có:

    \(\eqalign{
    & A{B^2} = S{A^2} + S{B^2} - 2SA.SB.\cos {60^0} \cr 
    & = {a^2} + {a^2} - 2{a^2}.{1 \over 2} = {a^2} \Rightarrow AB = a \cr 
    & A{C^2} = S{A^2} + S{C^2} - 2SA.SC.\cos {120^0} \cr 
    & = {a^2} + {a^2} - 2{a^2}\left( { - {1 \over 2}} \right) = 3{a^2}\cr & \Rightarrow AC = a\sqrt 3 \cr} \)

    Trong tam giác vuông \(SBC\) có: \(B{C^2} = S{B^2} + S{C^2} = 2{a^2} \) \(\Rightarrow BC = a\sqrt 2 \)

    Ta có: \(A{C^2} = A{B^2} + B{C^2} \Rightarrow \Delta ABC\) vuông tại \(B\).

    Gọi \(H\) là trung điểm của \(AC\) thì \(H\) là tâm đường tròn ngoại tiếp tam giác ABC.

    Vì \(SA = SB = SC\) nên \(SH \bot mp\left( {ABC} \right)\)

    Và \(S{H^2} = S{C^2} - H{C^2} \) \(= {a^2} - {\left( {{{a\sqrt 3 } \over 2}} \right)^2}\) \( = {{{a^2}} \over 4} \Rightarrow SH = {a \over 2}\)

    Gọi O là điểm đối xứng của S qua H.

    Khi đó \(OS = 2SH = 2.\frac{a}{2} = a\).

    Tam giác OAH vuông tại \(H\) nên theo Pitago ta có

    \(OA = \sqrt {A{H^2} + O{H^2}} \) \( = \sqrt {{{\left( {\frac{{a\sqrt 3 }}{2}} \right)}^2} + {{\left( {\frac{a}{2}} \right)}^2}}  = a\)

    Lại có SH là trục đường tròn ngoại tiếp tam giác ABC và \(O \in SH\) nên \(OA = OB = OC = a\).

    Vậy \(OS = OA = OB = OC = a\) hay \(O\) là tâm mặt cầu ngoại tiếp hình chóp \(S.ABC\) và bán kính \(R = a\).

    Cách khác:

    Ta có: \(HA = HB = HC\), \(SA = SB = SC\) nên \(SH\) là trục đường tròn ngoại tiếp tam giác ABC

    \( \Rightarrow \) tâm mặt cầu ngoại tiếp hình chóp S.ABC nằm trên \(SH\).

    Gọi M là trung điểm của SA.

    Trong \(\left( {SAC} \right)\), kẻ đường thẳng \(d\) đi qua M và vuông góc \(SA\) cắt \(SH\) tại \(O\)

    (\(d\) là đường trung trực của \(SA\) )

    Khi đó:

    \(O \in SH \Rightarrow OA = OB = OC\)

    \(O \in d \Rightarrow OS = OA\)

    \( \Rightarrow \) \(OS = OA = OB = OC\)  hay O là tâm mặt cầu ngoại tiếp hình chóp S.ABC.

    Xét \(\Delta SMO\) và \(\Delta SHA\) có:

    \(\widehat S\) chung

    \(\widehat {SMO} = \widehat {SHA} = {90^0}\)

    \(\begin{array}{l} \Rightarrow \Delta SMO \sim \Delta SHA\left( {g - g} \right)\\ \Rightarrow \frac{{SM}}{{SH}} = \frac{{SO}}{{SA}} \Rightarrow SM.SA = SH.SO\\ \Rightarrow \frac{1}{2}SA.SA = SH.SO\\ \Rightarrow \frac{1}{2}{a^2} = \frac{a}{2}.SO \Rightarrow SO = a\end{array}\)

    Vậy bán kính \(R = a\).

    Xemloigiai.com

    SGK Toán 12 Nâng cao

    Giải bài tập toán lớp 12 Nâng cao như là cuốn để học tốt Toán lớp 12 Nâng cao. Tổng hợp công thức, lý thuyết, phương pháp giải bài tập giải tích và hình học SGK Toán lớp 12 Nâng cao, giúp ôn luyện thi THPT Quốc gia

    GIẢI TÍCH 12 NÂNG CAO

    HÌNH HỌC 12 NÂNG CAO

    CHƯƠNG I. ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ

    CHƯƠNG II. HÀM SỐ LŨY THỪA, HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT

    CHƯƠNG III. NGUYÊN HÀM, TÍCH PHÂN VÀ ỨNG DỤNG

    CHƯƠNG IV. SỐ PHỨC

    ÔN TẬP CUỐI NĂM ĐẠI SỐ VÀ GIẢI TÍCH - TOÁN 12 NÂNG CAO

    CHƯƠNG I. KHỐI ĐA DIỆN VÀ THỂ TÍCH CỦA CHÚNG

    CHƯƠNG II. MẶT CẦU, MẶT TRỤ, MẶT NÓN

    CHƯƠNG III. PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN

    ÔN TẬP CUỐI NĂM HÌNH HỌC - TOÁN 12 NÂNG CAO