Bài 3 trang 63 SGK Hình học 12 Nâng cao

Cho hai đường tròn (O; r) và (O’; r’) cắt nhau tại hai điểm A, B và lần lượt nằm trên hai mặt phẳng phân biệt (P) và (P’).

    Đề bài

    Cho hai đường tròn \((O; r)\) và \((O’; r’)\) cắt nhau tại hai điểm \(A, B\) và lần lượt nằm trên hai mặt phẳng phân biệt \((P)\) và \((P’)\).

    a) Chứng minh rằng có mặt cầu \((S)\) đi qua hai đường tròn đó.

    b) Tìm bán kính \(R\) của mặt cầu \((S)\) khi \(r = 5, r' = \sqrt {10} \), \(AB = 6\), \({\rm{OO}}' = \sqrt {21} \).

    Lời giải chi tiết


    a) Gọi \(M\) là trung điểm của \(AB\) ta có: \(OM \bot AB\) và \(O'M \bot AB \Rightarrow AB \bot \left( {OO'M} \right)\)

    Gọi \(\Delta ,\,\Delta '\) lần lượt là trục của đường tròn \((O; r)\) và \((O’; r’)\) thì \(AB \bot \Delta \,\,,\,\,AB \bot \Delta '\). Do đó \(\Delta ,\,\Delta '\) cùng nằm trong mp \((OO’M)\).

    Gọi \(I\) là giao điểm của \(\Delta \) và \(\Delta '\) thì \(I\) là tâm của mặt cầu \((S)\) đi qua hai đường tròn \((O; r)\) và \((O’; r’)\) và \(S\) có bán kính \(R = IA\).

    b) Ta có: \(MA = MB = 3\,\,,\,\,OA = r = 5,\,\,OA' = r' = \sqrt {10} \)

    \(\eqalign{
    & OM = \sqrt {O{A^2} - A{M^2}} = \sqrt {25 - 9} = 4 \cr 
    & O'M = \sqrt {O'{A^2} - A{M^2}} = \sqrt {10 - 9} = 1 \cr} \)

    Áp dụng định lí Cosin trong \(\Delta {\rm{OMO'}}\) ta có:

    \(\eqalign{
    & OO{'^2} = O{M^2} + O'{M^2} - 2OM.O'M.\cos \widehat {OMO'} \cr 
    & \Rightarrow 21 = 16 + 1 - 2.4.1.cos\widehat {OMO'} \Rightarrow \cos \widehat {OMO'} = - {1 \over 2} \cr 
    & \Rightarrow \widehat {OMO'} = {120^0},\,\,\widehat {OIO'} = {60^0} \cr} \)

    Áp dụng định lí Côsin trong tam giác \(OMO’\) ta có:

    \(\eqalign{
    & M{O^2} = MO{'^2} + OO{'^2} - 2MO'.OO'.cos\widehat {MO'O} \cr 
    & \Rightarrow \cos \widehat {MO'O} = {{\sqrt {21} } \over 7} \Rightarrow \sin \widehat {OO'I} = {{\sqrt {21} } \over 7} \cr} \)

    (Vì \(\widehat {MO'O} + \widehat {OO'I} = {90^0}\))

    Áp dụng định lí Cosin trong tam giác \(OIO’\) ta có: 
    \({{OI} \over {\sin \widehat {OO'I}}} = {{OO'} \over {\sin \widehat {OIO'}}} \Leftrightarrow {{OI} \over {{{\sqrt {21} } \over 7}}} = {{\sqrt {21} } \over {{{\sqrt 3 } \over 2}}} \Leftrightarrow OI = 2\sqrt 3 \)

    Vậy \(R = \sqrt {O{A^2} + O{I^2}}  = \sqrt {25  + 12} = \sqrt {37} \)

    Xemloigiai.com

    SGK Toán 12 Nâng cao

    Giải bài tập toán lớp 12 Nâng cao như là cuốn để học tốt Toán lớp 12 Nâng cao. Tổng hợp công thức, lý thuyết, phương pháp giải bài tập giải tích và hình học SGK Toán lớp 12 Nâng cao, giúp ôn luyện thi THPT Quốc gia

    GIẢI TÍCH 12 NÂNG CAO

    HÌNH HỌC 12 NÂNG CAO

    CHƯƠNG I. ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ

    CHƯƠNG II. HÀM SỐ LŨY THỪA, HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT

    CHƯƠNG III. NGUYÊN HÀM, TÍCH PHÂN VÀ ỨNG DỤNG

    CHƯƠNG IV. SỐ PHỨC

    ÔN TẬP CUỐI NĂM ĐẠI SỐ VÀ GIẢI TÍCH - TOÁN 12 NÂNG CAO

    CHƯƠNG I. KHỐI ĐA DIỆN VÀ THỂ TÍCH CỦA CHÚNG

    CHƯƠNG II. MẶT CẦU, MẶT TRỤ, MẶT NÓN

    CHƯƠNG III. PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN

    ÔN TẬP CUỐI NĂM HÌNH HỌC - TOÁN 12 NÂNG CAO