Câu 35 trang 83 SGK Đại số và Giải tích 11 Nâng cao

Xác suất bắn trúng hồng tâm của một người bắn cung là 0,2. Tính xác suất để trong ba lần bắn độc lập :

    Xác suất bắn trúng hồng tâm của một người bắn cung là \(0,2\). Tính xác suất để trong ba lần bắn độc lập :

    LG a

    Người đó bắn trúng hồng tâm đúng một lần;

    Phương pháp giải:

    - Liệt kê các trường hợp có thể.

    - Sử dụng phối hợp các quy tắc nhân và quy tắc cộng để tính xác suất.

    Lời giải chi tiết:

    Gọi \(A_i\) là biến cố “Người bắn cung bắn trúng hồng tâm ở lần thứ \(i\)” (\(i = 1,2,3\)), ta có \(P(A_i) = 0,2\).

    Gọi \(K\) là biến cố “Trong ba lần bắn có duy nhất một lần người đó bắn trúng hồng tâm”, ta có:

    \(K = {A_1}\overline {{A_2}}\, \overline {{A_3}} \cup \overline {{A_1}} {A_2}\overline {{A_3}} \cup \overline {{A_1}} \, \overline {{A_2}} {A_3}\)

    Theo quy tắc cộng xác suất, ta có:

    \(P\left( K \right) = P\left( {{A_1}\overline {{A_2}}\,  \overline {{A_3}} } \right) + P\left( {\overline {{A_1}} {A_2}\overline {{A_3}} } \right) \)\(+ P\left( {\overline {{A_1}} \, \overline {{A_2}} {A_3}} \right)\)

    Theo quy tắc nhân xác suất, ta tìm được:

    \(P\left( {{A_1}\overline {{A_2}}\,  \overline {{A_3}} } \right) = P\left( {{A_1}} \right)P\left( {\overline {{A_2}} } \right)P\left( {\overline {{A_3}} } \right) \)\(= 0,2.0,8.0,8 = 0,128.\)

    Tương tự \(P\left( {\overline {{A_1}} {A_2}\overline {{A_3}} } \right) = P\left( {\overline {{A_1}} \, \overline {{A_2}} {A_3}} \right) = 0,128\)

    Vậy \(P(K) = 3.0,128 = 0,384\).


    LG b

    Người đó bắn trúng hồng tâm ít nhất một lần.

    Phương pháp giải:

    - Liệt kê các trường hợp có thể.

    - Sử dụng phối hợp các quy tắc nhân và quy tắc cộng để tính xác suất.

    Lời giải chi tiết:

    Gọi \(B\) là biến cố "Người đó bắn trúng hồng tâm ít nhất một lần".

    \({\overline B }\) là biến cố "Người đó không bắn trúng hồng tâm lần nào".

    Khi đó \(P\left( {\overline B } \right) = 0,8.0,8.0,8 = 0,512\).

    Vậy \(P\left( B \right) = 1 - P\left( {\overline B } \right) \) \(= 1 - 0,512 = 0,488\)

    Xemloigiai.com

    SGK Toán 11 Nâng cao

    Giải bài tập toán lớp 11 Nâng cao như là cuốn để học tốt Toán lớp 11 Nâng cao. Tổng hợp công thức, lý thuyết, phương pháp giải bài tập giải tích và hình học SGK Toán lớp 11 Nâng cao, giúp ôn luyện thi THPT Quốc gia

    ĐẠI SỐ VÀ GIẢI TÍCH 11 NÂNG CAO

    HÌNH HỌC 11 NÂNG CAO

    CHƯƠNG I. HÀM SỐ LƯỢNG GIÁC VÀ PHƯƠNG TRÌNH LƯỢNG GIÁC

    CHƯƠNG II. TỔ HỢP VÀ XÁC SUẤT

    CHƯƠNG III: DÃY SỐ. CẤP SỐ CỘNG VÀ CẤP SỐ NHÂN

    CHƯƠNG IV. GIỚI HẠN

    CHƯƠNG V. ĐẠO HÀM

    CHƯƠNG I. PHÉP DỜI HÌNH VÀ ĐỒNG DẠNG TRONG MẶT PHẲNG

    CHƯƠNG II: ĐƯỜNG THẲNG VÀ MẶT PHẲNG TRONG KHÔNG GIAN. QUAN HỆ SONG SONG

    CHƯƠNG III: VECTƠ TRONG KHÔNG GIAN. QUAN HỆ VUÔNG GÓC

    A. Tổ hợp

    B. Xác suất

    A. Giới hạn của dãy số

    B. Giới hạn của hàm số. Hàm số liên tục

    Lớp 11 | Các môn học Lớp 11 | Giải bài tập, đề kiểm tra, đề thi Lớp 11 chọn lọc

    Danh sách các môn học Lớp 11 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2025 ngắn gọn, chi tiết dễ hiểu.

    Toán Học

    Vật Lý

    Hóa Học

    Ngữ Văn

    Sinh Học

    GDCD

    Tin Học

    Tiếng Anh

    Công Nghệ

    Lịch Sử & Địa Lý

    Tác giả & Tác phẩm