Lý thuyết Ôn tập chương 3. Tam giác đồng dạng

Lý thuyết Ôn tập chương 3. Tam giác đồng dạng

    1.Tỉ số của hai đoạn thẳng  

    - Tỉ số của hai đoạn thẳng là tỉ số độ dài của chúng theo cùng một đơn vị đo.

    - Tỉ số của hai đoạn thẳng không phụ thuộc vào cách chọn đơn vị đo.

    2. Đoạn thẳng tỉ lệ

    Hai đoạn thẳng \(AB\)  và $CD$ tỉ lệ với hai đoạn thẳng $A'B'$ và $C'D'$ nếu có tỉ lệ thức:

    \(\dfrac{{AB}}{{C{\rm{D}}}} = \dfrac{{A'B'}}{{C'D'}}\)   hay      \(\dfrac{{AB}}{{A'B'}} = \dfrac{{C{\rm{D}}}}{{C'D'}}\)

    3. Định lí Ta-lét trong tam giác

    a) Định lí Ta-lét trong tam giác

    Nếu một đường thẳng song song với một cạnh của tam giác và cắt hai cạnh còn lại thì nó định ra trên hai cạnh đó những đoạn thẳng tương ứng tỉ lệ.

    b) Định lí Ta-lét đảo

    Nếu một đường thẳng cắt hai cạnh của một tam giác và định ra trên hai cạnh đó những đoạn thẳng tương ứng tỉ lệ thì đường thẳng đó song song với cạnh còn lại của tam giác.

    c) Hệ quả định lý Ta-lét

    Nếu một đường thẳng cắt hai cạnh của một tam giác và song song với cạnh còn lại thì nó tạo thành một tam giác mới có ba cạnh tương ứng tỉ lệ với ba cạnh của tam giác đã cho.

    Chú ý: Hệ quả trên vẫn đúng cho trường hợp đường thẳng song song với một cạnh và cắt phần kéo dài của hai cạnh còn lại.

    4. Tính chất đường phân giác trong tam giác

    Trong tam giác, đường phân giác của một góc chia cạnh đối diện thành hai đoạn thẳng tỉ lệ với hai cạnh kề hai đoạn ấy.

    $AD,{\rm{ }}AE$ là các phân giác trong và ngoài của góc  , suy ra:  \(\dfrac{{DB}}{{DC}} = \dfrac{{AB}}{{AC}} = \dfrac{{EB}}{{EC}}\)

    5. Nhắc lại một số tính chất của tỉ lệ thức

    \(\dfrac{a}{b} = \dfrac{c}{d} \Rightarrow \left\{ \begin{array}{l}a{\rm{d}} = bc\\\dfrac{a}{c} = \dfrac{b}{d}\\\dfrac{{a \pm b}}{b} = \dfrac{{c \pm d}}{d}\\\dfrac{a}{b} = \dfrac{c}{d} = \dfrac{{a + c}}{{b + d}} = \dfrac{{a - c}}{{b - d}}\end{array} \right.\)

    6. Khái niệm hai tam giác đồng dạng

    a. Định nghĩa:

    Hai tam giác gọi là đồng dạng với nhau nếu chúng có ba cặp góc bằng nhau từng đôi một và ba cặp cạnh tương ứng tỉ lệ.

    \( \Delta ABC \backsim \Delta A'B'C'\) \(\Leftrightarrow \left\{ \begin{array}{l}\widehat A = \widehat {A'},\,\widehat B = \widehat {B'},\widehat C = \widehat {C'}\\\dfrac{{AB}}{{A'B'}} = \dfrac{{BC}}{{B'C'}} = \dfrac{{CA}}{{C'A'}}\end{array} \right.\)

    * Tỉ số các cạnh tương ứng \(\dfrac{{AB}}{{A'B'}} = \dfrac{{BC}}{{B'C'}} = \dfrac{{CA}}{{C'A'}} = k\) được gọi là tỉ số đồng dạng  của hai tam giác.

    b. Định lí: Nếu một đường thẳng cắt hai cạnh của tam giác và song song với hai cạnh còn lại thì nó tạo thành một tam giác mới đồng dạng với tam giác đã cho.

    Chú ý: Định lí trên cũng đúng trong trường hợp đường thẳng a cắt phần kéo dài hai cạnh của tam giác và song song với cạnh còn lại.

    7. Các trường hợp đồng dạng của hai tam giác

    Trường hợp 1: Nếu ba cạnh của tam giác này tỉ lệ với ba cạnh của tam giác kia thì hai tam giác đó đồng dạng.

    Nếu \(\Delta ABC\) và \(\Delta A'B'C'\) có \(\dfrac{{AB}}{{A'B'}} = \dfrac{{BC}}{{B'C'}} = \dfrac{{AC}}{{A'C'}}\)  thì  \(\Delta ABC\)\(\backsim\) $\Delta A'B'C'\,\left( {c.c.c} \right).$

    Trường hợp 2: Nếu hai cạnh của tam giác này tỉ lệ với hai cạnh của tam giác kia và hai góc tạo bởi các cặp cạnh đó bằng nhau thì hai tam giác đó đồng dạng với nhau.

    Nếu \(\Delta ABC\) và \(\Delta A'B'C'\) có \(\widehat A = \widehat {A'}\) và \(\dfrac{{AB}}{{A'B'}} = \dfrac{{AC}}{{A'C'}}\) thì \(\Delta ABC \backsim \Delta A'B'C'\) (c.g.c)

    Trường hợp 3: Nếu hai góc của tam giác này lần lượt bằng hai góc của tam giác kia thì hai tam giác đó đồng dạng với nhau.

    Nếu \(\Delta ABC\) và \(\Delta A'B'C'\) có \(\widehat A = \widehat {A'}\) và \(\widehat B = \widehat {B'}\)  thì \(\Delta ABC \backsim \Delta A'B'C'\) (g.g)

    8. Các trường hợp đồng dạng của tam giác vuông

    Trường hợp 1: Nếu tam giác vuông này có một góc nhọn bằng góc nhọn của tam giác vuông kia thì hai tam giác vuông đó đồng dạng với nhau.

    Trường hợp 2: Nếu tam giác vuông này có hai cạnh góc vuông tỉ lệ với  hai cạnh góc vuông của tam giác vuông kia thì hai tam giác vuông đó đồng dạng với nhau.

    Trường hợp 3: Nếu cạnh huyền và một cạnh góc vuông của tam giác vuông này tỉ lệ với cạnh huyền và cạnh góc vuông của tam giác vuông kia thì hai tam giác vuông đó đồng dạng với nhau.

    9. Tính chất của hai tam giác đồng dạng

    Nếu hai tam giác đồng dạng với nhau thì:

    + Tỉ số hai đường cao tương ứng bằng tỉ số đồng dạng.

    + Tỉ số hai đường phân giác tương ứng bằng tỉ số đồng dạng.

    + Tỉ số hai đường trung tuyến tương ứng bằng tỉ số đồng dạng.

    + Tỉ số các chu vi bằng tỉ số đồng dạng.

    - Tỉ số các diện tích bằng bình phương tỉ số đồng dạng.

    SGK Toán lớp 8

    Giải bài tập toán lớp 8 như là cuốn để học tốt Toán lớp 8. Tổng hợp công thức, lý thuyết, phương pháp giải bài tập đại số và hình học SGK Toán lớp 8. Giai toan 8 xem mục lục giai toan lop 8 sach giao khoa duoi day

    PHẦN ĐẠI SỐ - TOÁN 8 TẬP 1

    PHẦN HÌNH HỌC - TOÁN 8 TẬP 1

    PHẦN ĐẠI SỐ - TOÁN 8 TẬP 2

    PHẦN HÌNH HỌC - TOÁN 8 TẬP 2

    CHƯƠNG I. PHÉP NHÂN VÀ PHÉP CHIA ĐA THỨC

    CHƯƠNG II. PHÂN THỨC ĐẠI SỐ

    CHƯƠNG I. TỨ GIÁC

    CHƯƠNG II. ĐA GIÁC, DIỆN TÍCH ĐA GIÁC

    CHƯƠNG III. PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN

    CHƯƠNG IV. BẤT PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN

    CHƯƠNG III. TAM GIÁC ĐỒNG DẠNG

    CHƯƠNG IV. HÌNH LĂNG TRỤ ĐỨNG. HÌNH CHÓP ĐỀU

    ÔN TẬP CUỐI NĂM - TOÁN 8

    Xem Thêm

    Lớp 8 | Các môn học Lớp 8 | Giải bài tập, đề kiểm tra, đề thi Lớp 8 chọn lọc

    Danh sách các môn học Lớp 8 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2025 ngắn gọn, chi tiết dễ hiểu.

    Toán Học

    Vật Lý

    Hóa Học

    Ngữ Văn

    Sinh Học

    GDCD

    Tin Học

    Tiếng Anh

    Công Nghệ

    Lịch Sử & Địa Lý

    Âm Nhạc & Mỹ Thuật