Giải mục II trang 22, 23, 24 SGK Toán 10 tập 2 - Cánh diều

Một bồn hoa có dạng hình tròn với bán kính là 0,8 m. a) Viết công thức tính diện tích S của bồn hoa theo \(\pi \) và bán kính 0,8 m. b) Khi tính diện tích của bồn hoa, bạn Ngân lấy một giá trị gần đúng của m là 3,1 và được kết quả là:

    Hoạt động 2

    Một bồn hoa có dạng hình tròn với bán kính là 0,8 m. 

    a) Viết công thức tính diện tích S của bồn hoa theo \(\pi \) và bán kính 0,8 m.

    b) Khi tính diện tích của bồn hoa, bạn Ngân lấy một giá trị gần đúng của m là 3,1 và được kết quả là:

    3,1.(0,8)2= 1,984 (\({m^2}\)).

    Giá trị |S - 1,984| biểu diễn điều gì?

    Lời giải chi tiết:

    a) Công thức tính diện tích S của bồn hoa là: \(S = \pi .{R^2} = \pi .0,{8^2}\left( {{m^2}} \right)\)

    b) Giá trị \(\left| {S - 1,984} \right|\) biểu diễn độ lệch giữa số “1,984” và S.


    Hoạt động 3

    Hãy ước lượng sai số tuyệt đối \({\Delta _{{S_1}}}\) ở Ví dụ 1.

    Lời giải chi tiết:

    Để ước lượng sai số tuyệt đối đó, ta làm như sau:  Do 3,1 < \(\pi \) < 3,15 nên\(3,1.{\left( {0,8} \right)^2} < \pi .{\left( {0,8} \right)^2} < 3,15.{\left( {0,8} \right)^2}\). Suy ra 1,984 < S < 2,016.

    Vậy \({\Delta _{{S_1}}} = \left| {S - {S_1}} \right| < {\rm{ }}2,016{\rm{ }}--{\rm{ }}1,984{\rm{ }} = {\rm{ }}0,032.\;\)

    Ta nói: Kết quả của bạn Ngân có sai số tuyệt đối không vượt quá 0,032 hay có độ chính xác là 0,032.


    Hoạt động 4

    Các nhà thiên văn tính được thời gian để Trái Đất quay một vòng xung quanh Mặt Trời là 365 ngày \( \pm \frac{1}{4}\)  ngày. Bạn Hùng tính thời gian đi bộ một vòng xung quanh sân vận động của trường khoảng 15 phút \( \pm 1\) phút. Trong hai phép đo trên, phép đo nào chính xác hơn?

    Lời giải chi tiết:

    Phép đo của các nhà thiên văn có sai số tuyệt đối không vượt quá \(\frac{1}{4}\)  ngày, có nghĩa là không vượt quá 360 phút. Phép đo của Hùng có sai số tuyệt đối không vượt quá 1 phút. Nếu chỉ so sánh 360 phút và 1 phút thì có thể dẫn đến hiểu rằng phép đo của bạn Hùng chính xác hơn phép đo của các nhà thiên văn. Tuy nhiên,  \(\frac{1}{4}\) ngày hay 360 phút là độ chính xác của phép đo một chuyển động trong 365 ngày, còn 1 phút là độ chính xác của  phép đo một chuyển động trong 15 phút. So sánh hai tỉ số \(\frac{{\frac{1}{4}}}{{365}} = \frac{1}{{1460}} = 0,0006849...\) và\(\frac{1}{{15}} = 0,0666...\) , ta thấy rằng phép đo của các nhà thiên văn chính xác hơn nhiều.

    SGK Toán 10 - Cánh diều

    Để học tốt SGK Toán 10 - Cánh diều, loạt bài giải bài tập SGK Toán 10 - Cánh diều đầy đủ kiến thức, lý thuyết và bài tập được biên soạn bám sát theo nội dung sách giáo khoa Lớp 10.

    Giải Toán 10 tập 1 - Cánh diều

    Giải Toán 10 tập 2 - Cánh diều

    Chương I. Mệnh đề toán học. Tập hợp

    Chương II. Bất phương trình và hệ bất phương trình bậc nhất hai ẩn

    Chương III. Hàm số và đồ thị

    Chương IV. Hệ thức lượng trong tam giác. Vectơ

    Chương V. Đại số tổ hợp

    Chương VI. Một số yếu tố thống kê và xác suất

    Chương VII. Phương pháp tọa độ trong mặt phẳng

    Lớp 10 | Các môn học Lớp 10 | Giải bài tập, đề kiểm tra, đề thi Lớp 10 chọn lọc

    Danh sách các môn học Lớp 10 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2025 ngắn gọn, chi tiết dễ hiểu.

    Toán Học

    Vật Lý

    Hóa Học

    Ngữ Văn

    Sinh Học

    GDCD

    Tin Học

    Tiếng Anh

    Công Nghệ

    Lịch Sử & Địa Lý

    Tác giả & Tác phẩm

    Hoạt động trải nghiệm & Hướng nghiệp