Giải mục 2 trang 30, 31 Chuyên đề học tập Toán 10 - Chân trời sáng tạo

Chứng minh rằng ({n^3} + 2n) chia hết cho 3 với mọi (n in mathbb{N}*)

    Thực hành 3

    Chứng minh rằng \({n^3} + 2n\) chia hết cho 3 với mọi \(n \in \mathbb{N}*\)

    Phương pháp giải:

    Chứng minh mệnh đề đúng với \(n \ge p\) thì:

    Bước 1: Kiểm tra mệnh đề là đúng với \(n = p\)

    Bước 2: Giả thiết mệnh đề đúng với số tự nhiên \(n = k \ge p\) và chứng minh mệnh đề đúng với \(n = k + 1.\) Kết luận.

    Lời giải chi tiết:

    Ta chứng minh bằng quy nạp theo n.

    Bước 1: Với \(n = 1\) ta có \({1^3} + 2.1 = 3\) chia hết cho 3

    Như vậy mệnh đề đúng cho trường hợp \(n = 1\)

    Bước 2: Giả sử mệnh đề đúng với \(n = k\), nghĩa là có:

    \({k^3} + 2k\) chia hết cho 3

    Ta sẽ chứng minh bất đẳng thức đúng với \(n = k + 1\), nghĩa là cần chứng minh

    \({(k + 1)^3} + 2(k + 1)\) chia hết cho 3

    Sử dụng giả thiết quy nạp, với lưu ý \(k \ge 1\), ta có

    \({(k + 1)^3} + 2(k + 1) = {k^3} + 3{k^2} + 3k + 1 + 2k + 2 = \left( {{k^3} + 2k} \right) + 3\left( {{k^2} + k + 1} \right)\)

    Vậy bất đẳng thức đúng với \(n = k + 1\).

    Theo nguyên lí quy nạp toán học, bất đẳng thức đúng với mọi số tự nhiên \(n \in \mathbb{N}*\).


    Thực hành 4

    Chứng minh rằng đẳng thức sau đúng với mọi \(n \in \mathbb{N}*\)

    \(1 + q + {q^2} + {q^3} + {q^4} + ... + {q^{n - 1}} = \frac{{1 - {q^n}}}{{1 - q}}\quad (q \ne 1)\)

    Phương pháp giải:

    Chứng minh mệnh đề đúng với \(n \ge p\) thì:

    Bước 1: Kiểm tra mệnh đề là đúng với \(n = p\)

    Bước 2: Giả thiết mệnh đề đúng với số tự nhiên \(n = k \ge p\) và chứng minh mệnh đề đúng với \(n = k + 1.\) Kết luận.

    Lời giải chi tiết:

    Ta chứng minh bằng quy nạp theo n.

    Bước 1: Với \(n = 1\) ta có \(1 = \frac{{1 - q}}{{1 - q}}\)

    Như vậy đẳng thức đúng cho trường hợp \(n = 1\)

    Bước 2: Giả sử mệnh đề đúng với \(n = k\), nghĩa là có:

    \(1 + q + {q^2} + {q^3} + {q^4} + ... + {q^{k - 1}} = \frac{{1 - {q^k}}}{{1 - q}}\quad (q \ne 1)\)

    Ta sẽ chứng minh đẳng thức đúng với \(n = k + 1\), nghĩa là cần chứng minh

    \(1 + q + {q^2} + {q^3} + {q^4} + ... + {q^{k - 1}} + {q^k} = \frac{{1 - {q^{k + 1}}}}{{1 - q}}\quad (q \ne 1)\)

    Sử dụng giả thiết quy nạp, với lưu ý \(k \ge 1\), ta có

    \(\begin{array}{l}1 + q + {q^2} + {q^3} + {q^4} + ... + {q^{k - 1}} + {q^k} = \frac{{1 - {q^k}}}{{1 - q}} + {q^k}\\ = \frac{{1 - {q^k} + {q^k}(1 - q)}}{{1 - q}} = \frac{{1 - {q^k} + {q^k} - {q^{k + 1}}}}{{1 - q}} = \frac{{1 - {q^{k + 1}}}}{{1 - q}}\quad (q \ne 1)\end{array}\)

    Vậy đẳng thức đúng với \(n = k + 1\).

    Theo nguyên lí quy nạp toán học, bất đẳng thức đúng với mọi \(n \in \mathbb{N}*\).


    Thực hành 5

    Chứng minh rằng trong mặt phẳng, n đường thẳng cùng đi qua một điểm chia mặt phẳng thành 2n phần \((n \in \mathbb{N}*)\).

    Phương pháp giải:

    Chứng minh mệnh đề đúng với \(n \ge p\) thì:

    Bước 1: Kiểm tra mệnh đề là đúng với \(n = p\)

    Bước 2: Giả thiết mệnh đề đúng với số tự nhiên \(n = k \ge p\) và chứng minh mệnh đề đúng với \(n = k + 1.\) Kết luận.

    Lời giải chi tiết:

    Ta chứng minh bằng quy nạp theo n.

    Gọi I là điểm mà các đường thẳng đi qua

    Bước 1: Với \(n = 1\) ta có một đường thẳng đi qua điểm I chia mặt phẳng thành 2 phần.

    Như vậy mệnh đề đúng cho trường hợp \(n = 1\)

    Bước 2: Giả sử mệnh đề đúng với \(n = k\), nghĩa là có: k đường thẳng đi qua I chia mặt phẳng thành 2k phần. Ta chứng minh mệnh đề đúng với \(n = k + 1\), tức là chứng minh k+1 đường thẳng cùng đi qua I chia mặt phẳng thành 2(k+1) phần.

    Gọi đường thẳng thứ k+1 là d. Theo giả thiết quy nạp, k đường thẳng đầu tiên chia mặt phẳng thành 2k phần

    Dễ thấy: Mỗi phần mặt phẳng đều là phần trong của góc có đỉnh là I và cạnh nằm trên các đường thẳng đã cho. Hơn nữa các góc tạo thành các cặp góc đối đỉnh.

    Do các đường thẳng là khác nhau nên đường thẳng d phải nằm trong 1 cặp góc đối đỉnh nào đó. Nó chia 2 phần là phần trong của cặp góc này thành 4 phần.

    Do đó số phần mặt phẳng được chia bởi k+1 đường thẳng là \(2k + 2 = 2(k + 1)\).

    Vậy mệnh đề đúng với \(n = k + 1\).

    Theo nguyên lí quy nạp toán học, mệnh đề đúng với mọi \(n \in \mathbb{N}*\).

     


    Vận dụng

    (Công thức lãi kép) Một khoản tiền A đồng (gọi là vốn) được gửi tiết kiệm có kì hạn ở một ngân hàng theo thể thức lãi kép (tiền sau mỗi kì hạn nếu khoongg rút ra thì được cộng vào vốn của kì kế tiếp). Giả sử lãi suất theo kì là r không đổi qua các kì hạn, ngguowif gửi không rút tiền vốn và lãi trong suốt các kì hạn đề cập sau đây. Gọi \({T_n}\) là tổng số tiền vốn và lãi của người gửi sau kì hạn thứ n \((n \in \mathbb{N}*)\).

    a) Tính \({T_1},{T_2},{T_3}.\)

    b) Từ đó, dự đoán công thức tính \({T_n}\) và chứng minh công thức đó bằng phương pháp quy nạp toán học.

    Phương pháp giải:

    PP quy nạp toán học: Chứng minh mệnh đề đúng với \(n \ge p\) thì:

    Bước 1: Kiểm tra mệnh đề là đúng với \(n = p\)

    Bước 2: Giả thiết mệnh đề đúng với số tự nhiên \(n = k \ge p\) và chứng minh mệnh đề đúng với \(n = k + 1.\) Kết luận.

    Lời giải chi tiết:

    a) Sau kì thứ 1 người đó nhận được: \({T_1} = A + A.r = A(1 + r)\)

    Sau kì thứ 1 người đó không rút ra thì ở kì thứ 2 tiền vốn chính là \({T_1}\), vậy người đó nhận được: \({T_2} = {T_1} + {T_1}.r = {T_1}(1 + r) = A.{(1 + r)^2}\)

    Sau kì thứ 3 người đó nhận được: \({T_3} = {T_2} + {T_2}.r = {T_2}(1 + r) = A.{(1 + r)^3}\)

    b) Dự đoán: \({T_n} = A.{(1 + r)^n}\) (*)

    Ta chứng minh (*) bằng phương pháp quy nạp

    Với \(n = 1\) ta có \({T_1} = A(1 + r)\)

    Vậy (*) đúng với \(n = 1\)

    Giải sử (*) đúng với \(n = k\) tức là ta có \({T_k} = A.{(1 + r)^k}\)

    Ta chứng minh (*) đúng với \(n = k + 1\) tức là chứng minh  \({T_{k + 1}} = A.{(1 + r)^{k + 1}}\)

    Thật vậy, sau kì thứ k, nếu không rút lãi thì lãi được tính vào tiền vốn của kì k+1, khi đó số tiền nhận được là  \({T_{k + 1}} = {T_k} + {T_k}.r = {T_k}(1 + r) = A.{(1 + r)^{k + 1}}\)

    Vậy (*) đúng với mọi số tự nhiên \(n \ge 1.\)

    Chuyên đề học tập Toán 10 - Chân trời sáng tạo

    Để học tốt Chuyên đề học tập Toán 10 - Chân trời sáng tạo, loạt bài giải bài tập Chuyên đề học tập Toán 10 - Chân trời sáng tạo đầy đủ kiến thức, lý thuyết và bài tập được biên soạn bám sát theo nội dung sách giáo khoa Lớp 10.

    Chuyên đề 1: Hệ phương trình bậc nhất ba ẩn và ứng dụng

    Chuyên đề 2: Phương pháp quy nạp toán học và nhị thức Newton

    Lớp 10 | Các môn học Lớp 10 | Giải bài tập, đề kiểm tra, đề thi Lớp 10 chọn lọc

    Danh sách các môn học Lớp 10 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.

    Toán Học

    Vật Lý

    Hóa Học

    Ngữ Văn

    Sinh Học

    GDCD

    Tin Học

    Tiếng Anh

    Công Nghệ

    Lịch Sử & Địa Lý

    Tác giả & Tác phẩm

    Hoạt động trải nghiệm & Hướng nghiệp