Câu 74 trang 128 Sách bài tập Hình học 11 Nâng cao

Giải bài tập Câu 74 trang 128 Sách bài tập Hình học 11 Nâng cao

    Cho tứ diện ABCD. Gọi \({A_1},{B_1},{C_1},{D_1}\) là các điểm lần lượt thuộc các đường thẳng AB, BC, CD, DA sao cho \(\overrightarrow {{A_1}A}  = k\overrightarrow {{A_1}B} ,\overrightarrow {{B_1}B}  = k\overrightarrow {{B_1}C} \) , \(\overrightarrow {{C_1}C}  = k\overrightarrow {{C_1}D} ,\overrightarrow {{D_1}D}  = k\overrightarrow {{D_1}A} \). Với giá trị bào của k thì bốn điểm \({A_1},{B_1},{C_1},{D_1}\) cùng thuộc một mặt phẳng?

    Trả lời:

    Cách 1. 

    Đặt \(\overrightarrow {DA}  = \overrightarrow a ,\overrightarrow {DB}  = \overrightarrow b ,\overrightarrow {DC}  = \overrightarrow c \) thì \(\overrightarrow a ,\overrightarrow b ,\overrightarrow c \) không đồng phẳng.

    Các điểm \({A_1},{B_1},{C_1},{D_1}\)  cùng thuộc một mặt phẳng khi và chỉ khi có các số m, n để

    \(\overrightarrow {{D_1}{B_1}}  = m\overrightarrow {{D_1}{A_1}}  + n\overrightarrow {{D_1}{C_1}} \,\,\,\,\,\,\,\,\,\left( 1 \right)\)

    Từ hệ thức \(\overrightarrow {{B_1}B}  = k\overrightarrow {{B_1}C} \), ta có

    \(\overrightarrow {{D_1}{B_1}}  = {{\overrightarrow {{D_1}B}  - k\overrightarrow {{D_1}C} } \over {1 - k}}\)

    hay

    \(\eqalign{  & \overrightarrow {{D_1}{B_1}}  = {{\overrightarrow {{D_1}D}  + \overrightarrow {DB}  - k\left( {\overrightarrow {{D_1}D}  + \overrightarrow {DC} } \right)} \over {1 - k}}  \cr  &  = \overrightarrow {{D_1}D}  + {1 \over {1 - k}}\overrightarrow b  - {k \over {1 - k}}\overrightarrow c  \cr} \)

    Mặt khác

     \(\eqalign{  & \overrightarrow {{D_1}D}  = k\overrightarrow {{D_1}A}  = k\left( {\overrightarrow {{D_1}D}  + \overrightarrow {DA} } \right)  \cr  &  \Rightarrow \overrightarrow {{D_1}D}  = {k \over {1 - k}}\overrightarrow a  \cr} \)

    Vậy \(\overrightarrow {{D_1}{B_1}}  = {k \over {1 - k}}\overrightarrow a  + {1 \over {1 - k}}\overrightarrow b  - {k \over {1 - k}}\overrightarrow c \).

    Tương tự như trên, ta có

    \(\eqalign{  & \overrightarrow {{D_1}{A_1}}  = {{\overrightarrow {{D_1}A}  - k\overrightarrow {{D_1}B} } \over {1 - k}}  \cr  &  = {{\overrightarrow {{D_1}D}  + \overrightarrow {DA}  - k\left( {\overrightarrow {{D_1}D}  + \overrightarrow {DB} } \right)} \over {1 - k}}  \cr  &  = \overrightarrow {{D_1}D}  + {1 \over {1 - k}}\overrightarrow a  - {k \over {1 - k}}\overrightarrow b  \cr} \)

    hay

    \(\eqalign{  & \overrightarrow {{D_1}{A_1}}  = {{k + 1} \over {1 - k}}\overrightarrow a  - {k \over {1 - k}}\overrightarrow b \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 3 \right)  \cr  & \overrightarrow {{D_1}{C_1}}  = {{\overrightarrow {{D_1}C}  - k\overrightarrow {{D_1}D} } \over {1 - k}}  \cr  &  = {{\overrightarrow {{D_1}D}  + \overrightarrow {DC}  - k\overrightarrow {{D_1}D} } \over {1 - k}}  \cr  &  = \overrightarrow {{D_1}D}  + {1 \over {1 - k}}\overrightarrow c  \cr} \)

    do đó \(\overrightarrow {{D_1}{C_1}}  = {k \over {1 - k}}\overrightarrow a  + {1 \over {1 - k}}\overrightarrow c .\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 4 \right)\)

    Từ (1), (2), (3), (4) ta có các điểm \({A_1},{B_1},{C_1},{D_1}\) cùng thuộc mặt phẳng khi và chỉ khi

    \(k\overrightarrow a  + \overrightarrow b  - k\overrightarrow c \)

    \(= \left( {mk + nk + m} \right)\overrightarrow a  - mk\overrightarrow b  + n\overrightarrow c \)

    Do \(\overrightarrow a ,\overrightarrow b ,\overrightarrow c \) không đồng phẳng nên đẳng thức trên xảy ra khi và chỉ khi có các số m, n để

    \(\left\{ \matrix{  k = mk + nk + m \hfill \cr  1 =  - mk \hfill \cr   - k = n \hfill \cr}  \right.\)

    Điều đó tương đương với \(k =  - 1 - {k^2} - {1 \over k}\) hay \({k^3} + {k^2} + k + 1 = 0\) hay k = -1.

    Vậy với k = -1 thì các điểm \({A_1},{B_1},{C_1},{D_1}\) cùng thuộc một mặt phẳng.

    Cách 2.

    Đặt \(\overrightarrow {DA}  = \overrightarrow a ,\overrightarrow {DB}  = \overrightarrow b ,\overrightarrow {DC}  = \overrightarrow c \). Tìm k để các điểm \({A_1},{B_1},{C_1},{D_1}\) cùng thuộc một mặt phẳng tương đương với việc tìm k để có biểu diễn

    \(\overrightarrow {D{A_1}}  = x\overrightarrow {D{B_1}}  + y\overrightarrow {D{C_1}}  + z\overrightarrow {{\rm{D}}{{\rm{D}}_1}} \) 

    với x + y + z = 1               (a)

    Từ hệ thức \(\overrightarrow {{A_1}A}  = k\overrightarrow {{A_1}B} \) ta có

    \(\eqalign{  & \overrightarrow {D{A_1}}  = {{\overrightarrow {DA}  - k\overrightarrow {DB} } \over {1 - k}}  \cr  &  = {1 \over {1 - k}}\overrightarrow a  - {k \over {1 - k}}\overrightarrow b \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right) \cr} \)

    Tương tự như trên, ta cũng có

    \(\overrightarrow {D{B_1}}  = {1 \over {1 - k}}\overrightarrow b  - {k \over {1 - k}}\overrightarrow c \,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 2 \right)\)

    Mặt khác từ \(\overrightarrow {{C_1}C}  = k\overrightarrow {{C_1}D} \) ta có

    \(\eqalign{  & \overrightarrow {{C_1}D}  + \overrightarrow {DC}  = k\overrightarrow {{C_1}D}   \cr  &  \Leftrightarrow \overrightarrow {D{C_1}}  = {1 \over {1 - k}}\overrightarrow c \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 3 \right) \cr} \)

    Tương tự từ \(\overrightarrow {{D_1}D}  = k\overrightarrow {{D_1}A} \), ta cũng có

    \(\overrightarrow {{D_1}D}  = {k \over {1 - k}}\overrightarrow a \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 4 \right)\)

    Từ (1), (2), (3), (4), ta suy ra

    \(\overrightarrow {D{A_1}}  =  - {1 \over k}\overrightarrow {{\rm{D}}{{\rm{D}}_1}}  - k\overrightarrow {D{B_1}}  - {k^2}\overrightarrow {D{C_1}} \,\,\,\,\,\,\,\,\,\,\,\left( b \right)\)

    Từ (a) và (b) ta có các điểm \({A_1},{B_1},{C_1},{D_1}\) cùng thuộc một mặt phẳng khi và chỉ khi:

    \(\eqalign{  &  - {1 \over k} - k - {k^2} = 1  \cr  &  \Leftrightarrow {k^3} + {k^2} + k + 1 = 0  \cr  &  \Leftrightarrow k =  - 1 \cr} \)

    Vậy với k = -1 thì các điểm \({A_1},{B_1},{C_1},{D_1}\) cùng thuộc một mặt phẳng.

    Xemloigiai.com

    SBT Toán 11 Nâng cao

    Lời giải chi tiết, đáp án bài tập SBT Đại số và Giải tích, Hình học 11 Nâng cao. Tất cả lý thuyết, bài tập vận dụng, thực hành Toán 11 Nâng cao

    PHẦN ĐẠI SỐ VÀ GIẢI TÍCH 11 NÂNG CAO

    PHẦN HÌNH HỌC 11 NÂNG CAO

    CHƯƠNG I: HÀM SỐ LƯỢNG GIÁC VÀ PHƯƠNG TRÌNH LƯỢNG GIÁC

    CHƯƠNG II: TỔ HỢP VÀ XÁC SUẤT

    CHƯƠNG III: DÃY SỐ, CẤP SỐ CỘNG VÀ CẤP SỐ NHÂN

    CHƯƠNG IV: GIỚI HẠN

    CHƯƠNG V: ĐẠO HÀM

    CHƯƠNG I: PHÉP DỜI HÌNH VÀ PHÉP ĐỒNG DẠNG

    CHƯƠNG II: ĐƯỜNG THẲNG VÀ MẶT PHẲNG TRONG KHÔNG GIAN. QUAN HỆ SONG SONG

    CHƯƠNG III. VECTƠ KHÔNG GIAN. QUAN HỆ VUÔNG GÓC

    Lớp 11 | Các môn học Lớp 11 | Giải bài tập, đề kiểm tra, đề thi Lớp 11 chọn lọc

    Danh sách các môn học Lớp 11 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2025 ngắn gọn, chi tiết dễ hiểu.

    Toán Học

    Vật Lý

    Hóa Học

    Ngữ Văn

    Sinh Học

    GDCD

    Tin Học

    Tiếng Anh

    Công Nghệ

    Lịch Sử & Địa Lý

    Tác giả & Tác phẩm